
Free and Open-Source Software:

Coordination and Competition

Robin Ng†

29th July 2024

Abstract

Free and Open-Source Software (FOSS) are developed by a community of develop-
ers led by a coordinator. Coordinators balance the following trade-off: (i) more de-
velopers improve FOSS quality—a positive vertical differentiation effect; (ii) more
developers lead to more diverse views, driving FOSS characteristics away from
the preferences of existing developers—a negative horizontal differentiation effect.
FOSS are able to attract more developers when coordinators improve their level
of coordination, increasing the marginal vertical network effect, or by having a
more permissive Open-Source license, increasing the marginal horizontal network
effect. More permissive Open-Source licenses can intensify competition between
FOSS and proprietary software, resulting in lower prices. However permissive li-
censes may reduce the incentives to coordinate FOSS, leading to lower quality
FOSS that only serve niche markets. I explore coordinators who may have differ-
ent motivations—self-interested Founders, volunteering Altruists, and profit-driven
Managers—discussing when and how they choose to coordinate FOSS.

JEL: D21, D26, L14, L17
Keywords: Open-Source Software, Network effects, Software Licensing

†Department of Economics, University of Mannheim; Mannheim Centre for Competition and Innovation.
Contact: hello@robinng.com
Acknowledgements: I am especially grateful to Paul Belleflamme, Greg Taylor, Johannes Johnen, and
Rachel Tan for countless fruitful discussions. I also thank Carl-Christian Groh, Julius Goedde, Justin
Johnson, Michael Kummer, François Maniquet, Jeanine Miklós-Thal, Martin Peitz, Erika Pini, Andrew
Rhodes, Manpreet Singh, Yossi Spiegel, and participants of the CORE Brown Bag, Belgian Doctoral
Workshop, PSE EDP Jamboree, AMES2023, MaCCI Annual Conference, IIOC2024, ZEW ICT confer-
ence, IBEO Workshop for their comments.
Funding: This project is realised with funding from: Fédération Wallonie-Bruxelles through the Ac-
tion de recherche concertée grant 19/24-101; Belgian National Fund for Scientific Research through the
Aspirant research fellowship FC46885; Social Science Research Council-Singapore Management Univer-
sity Graduate Research Fellowship; Deutsche Forschungsgemeinschaft (DFG) through the Collaborative
Research Center Transregio (CRC TR) 224, Project B05.

mailto:hello@robinng.com


Free and Open-Source Software Robin Ng

1 Introduction

Free and Open-Source Software (FOSS) are a bedrock of the digital age. They range

from prominent household names like Google’s Android to niche and independently de-

veloped programs like Paint.NET. In recent years, governments have begun to recognise

the importance of FOSS, providing funds to support its innovation and enhance security.1

Despite these initiatives, and the widespread adoption of FOSS by firms and individuals,

developers of FOSS rarely see monetary compensation or funding.2 Hence, developers of

FOSS are effectively volunteers, having no obligation to develop any aspect of the soft-

ware. This community-driven nature of FOSS creates difficulties for those coordinating

its development (Michlmayr, Hunt, & Probert, 2007).3 Undeterred by the lack of funding

and challenges, many still choose to coordinate FOSS development.

Prior research has focused on the private motives of developers contributing to a public

good. However, it has overlooked the motives of coordinators leading FOSS develop-

ment. By incorporating both the incentives of coordinators and developers into a theo-

retical model, I study how FOSS are coordinated, the features that emerge as a result of

developers’ preferences, and the role FOSS play in promoting competition.

Coordinators guide the development of FOSS. They act as an interface between users

and developers, leading the community of developers by prioritising features and bugs

(Lerner & Tirole, 2002; Klug, Bogart, & Herbsleb, 2021).4 Higher levels of coordination

provide clearer guidance to developers, ensuring that individual development efforts do

not overlap, which improves the quality of the FOSS. I investigate three common mo-

tivations of coordinators (Lerner & Tirole, 2002): (i) self-interested Founders who

are unsatisfied with existing proprietary software, seeking to build an alternative that

better suits their needs, maximising their utility; (ii) volunteering Altruists selected

to represent the views of the FOSS community, concerning themselves with the utility

of members of the FOSS community (Raymond, 1999); (iii) profit-driven Managers

providing paid features and services adjacent to the FOSS, and seeking to maximise

their profits (Andersen-Gott, Ghinea, & Bygstad, 2012).5 Considering these incentives,

I explore when and how different coordinators coordinate FOSS.

1For example the USA’s ‘Securing Open Source Software Act of 2023’, Europe’s support for FOSS to
promote Digital Sovereignty (independence from large corporations) (Paulina Grzegorzewska, 2021;
Madiega, 2020; Sean Fleming, 2021).

2The most prominent FOSS receive funding below the USA poverty line (André Staltz, 2019; The
Apache Software Foundation, 2023b). Denis Pushkarev (2023) and Marak Squires describe the funding
challenges faced by developers (Emma Roth, 2022).

3Chris Stokel-Walker (2014); Denis Pushkarev (2023) document the problems they face in coordinating
FOSS development.

4Raymond (1999) describes the central role of coordinators and the need for building relationships with
users and developers. The Apache Software Foundation (2023a); The Document Foundation (2023);
The Linux Foundation (2023) are examples of FOSS coordinated by volunteers.

5Prominent examples of coordinators with a profit-driven motives include: Microsoft, IBM, and Google.

1



Free and Open-Source Software Robin Ng

Developers choose when, what, and how they contribute to FOSS. Evidence shows devel-

opers contribute to FOSS because they are attracted to the high levels of customisability

FOSS provide, only contributing to features that directly benefit themselves (Raymond,

1999; Lerner & Tirole, 2002; Mustonen, 2003).6 Hence, the resulting FOSS features

depend on the preferences of developers contributing to it.

The ability of a developer to alter the features of a FOSS depends on the governance of the

FOSS. I consider the software license adopted by the FOSS as a proxy for its governance

structure. More restrictive licenses, such as copyleft licenses, give coordinators more

control over the FOSS features.7 This means the FOSS features are less sensitive to the

preferences of developers. Conversely, permissive licenses, such as the MIT license, allow

the characteristics of the FOSS to be more sensitive to developers’ preferences.8 I capture

these effects in a model of horizontal product differentiation, allowing the FOSS location

to depend on which developers contribute to it and the software license adopted by the

FOSS.

Formally, I adopt a simple model of product differentiation à la Hotelling, where users

have preferences over software features. I focus on the situation where a duopoly exists,

and users choose between paying a fee and using a proprietary software or paying nothing

to use the FOSS. I assume that users are also developers, and when they choose to use

the FOSS, they contribute to its development.9 Users face some mismatch cost if their

preferred features differ from the features of the chosen software.

A proprietary software is located at one end of the Hotelling line and has a fixed quality.

Its price is set by a profit-maximising firm. In the main model, I focus on a FOSS

coordinated by it’s Founder.

A Founder is located at the opposite end of the Hotelling line.10 The Founder decides

on the level of coordination of the FOSS, facing the following trade-off: On the one

hand, higher levels of coordination ensure that developers’ efforts complement each other,

leading to distinct contributions to the FOSS, improving its quality. Through a virtuous

cycle of network effects, this attracts even more developers, further improving quality.

On the other hand, the characteristics of a FOSS are endogenous and depend on who

develops it. Hence, the preferences of developers affect the location of the FOSS. Because

6I do not differentiate between the reasons developers’ preferences may differ: developers may seek
solutions to a specific problem, use FOSS to signal their ability, or to build personal skills. In my
model, it is sufficient that developers have some preference for the software features they work on.

7A FOSS with a copyleft license would require modifications and extensions to be kept as FOSS. This
means proprietary software may not reuse code from copyleft software.

8Permissive licenses impose few, or no, restrictions on how the FOSS source code is used or distributed.
9Users also serve as software testers, contributing to the task of debugging the FOSS (Raymond, 1999).
10Founders are motivated to develop FOSS when proprietary alternatives do not suit their needs. Hence,
the most likely founder is one whose preferences differ the most from the proprietary software.

2



Free and Open-Source Software Robin Ng

the Founder has the most extreme preferences, every additional developer shifts the FOSS

away from the Founder’s preferences. This increases the mismatch cost of the Founder,

who may prefer lower levels of coordination to reduce his mismatch cost.

First, by considering how developers’ incentives may influence the location of a FOSS, I

show that FOSS generate more competitive effects than previously understood. When

more developers contribute to the FOSS, the characteristics of the FOSS become closer

to the proprietary software, leading to fiercer horizontal competition. This effect is in

addition to previously studied scenarios where more users can improve product qual-

ity. Because more developers change the FOSS’ competitive position in two dimensions,

proprietary firms have a stronger incentive to lower prices and gain market share. There-

fore, despite serving niche communities, the mere presence of FOSS can lead to a more

competitive market.

Second, I show how the equilibrium level of coordination depends on the FOSS license.

Restrictive licenses mean the FOSS location is not sensitive to the marginal developer’s

preference. As developers are less able to influence the final software design, they are

less likely to participate in FOSS development. Fewer developers result in a lower quality

FOSS. Hence, when licenses are restrictive, Founders prefer distinct contributions to boost

the quality of the FOSS. Conversely, when a FOSS license is permissive, its location is

more sensitive to the marginal developer, and additional developers increase the Founder’s

mismatch cost. As such, more permissive licenses may deter the Founder from managing

FOSS, leading to a lower (or zero) level of coordination, and the underprovision of FOSS.

Third, I discuss how more permissive FOSS licenses affect the surplus in the market. More

permissive FOSS licenses decrease the surplus of FOSS users. This is because permissive

licenses cause the proprietary firm to set lower prices, and the Founder to lower his level

of coordination. Hence, the FOSS has fewer users, and its quality decreases—both effects

decreasing FOSS user surplus. Lower prices improve the surplus of proprietary software

users. However, even though the firm is able to capture a larger share of the market, it

receives less profit.

Finally, I repeat this analysis with volunteering Altruists and profit-driven Managers

as FOSS coordinators. Altruists behave similarly to Founders. However, because they

are concerned with maximising the surplus of all FOSS users, a more diverse group of

users increases mismatch cost. Hence, Altruists prefer a lower level of coordination,

leading to lower total surplus, than Founders. This suggests that, not withstanding other

organisation skills, individual Founders are better suited to coordinate FOSS development

than larger FOSS organisations.

Managers’ level of coordination is binary, and depend on how competitive the proprietary

software is. When the proprietary software is of a low quality, Managers prefer distinct

3



Free and Open-Source Software Robin Ng

contributions, and when the proprietary software is of a high quality, Managers prefer

the lowest level of coordination that creates a viable FOSS. Comparing the three types

of coordinators, I show that Managers are the only coordinator that benefit from more

permissive licenses, questioning the influence that large corporations have on the Open

Source Initiative, and more broadly the open-source community.

2 Related Literature

This paper studies the coordination of Free and Open-Source Software. Previous theoreti-

cal work has focused on the eccentricities of developers (Johnson, 2002, 2006; Casadesus-

Masanell & Ghemawat, 2006; Athey & Ellison, 2014). My paper is most similar to

Johnson (2002) which also considers how the community-driven nature of FOSS can

influence the characteristics of the FOSS. Additionally, I take into account the widely

reported motives of coordinators: as Founders, members of the community, or profit

motivated firms (Franke & Von Hippel, 2003). Lerner and Tirole (2002) provides an

overview of the literature on FOSS.

I extend the workhorse model of product differentiation provided in Hotelling (1929),

which has been used to study vertical network effects, where more users can lead to

higher product quality (Shy & Thisse, 1999; Fainmesser & Galeotti, 2020). In addition

to vertical network effects, I introduce horizontal network effects, where users can modify

the location of the product. Using this model, I study the situation where a product’s

compatibility with users depend on the preferences of other users. Doing so allows me

to capture empirical evidence on the motives of developers who choose when, what, and

how they contribute to FOSS (Fielding, 1999; Hars & Ou, 2002; Franke & Von Hippel,

2003; Shah, 2006).

There has been little theoretical work discussing the role of open-source licenses. Most

papers avoid this discussion or discuss their results in the context of a specific license.

Lerner and Tirole (2005b) and Gaudeul (2005) discuss simple models of license choice.

Gaudeul (2008) assumes the selection of a given binary license, either permissive or

restrictive, and discuss the implication of using either license. August, Chen, and Zhu

(2021) argues that restrictive licenses can incentivise contributions to FOSS.

My model also takes the license choice as given, but allows for a potential continuum

of license designs. I study how coordinators select the level of coordination, and hence

determine the marginal network effect developers generate. In comparative statics, I show

how the choice of FOSS license can affect its coordination and ability to compete with

proprietary software.

In Section 3, I describe the setting in detail, discussing my main results about Founders in

Section 4. I discuss the roles of Altruists and Managers in Sections 5 and 6 respectively.

4



Free and Open-Source Software Robin Ng

In Section 7, I provide a series of extensions, and Section 8 concludes. Proofs are found

in Appendix A.

3 Model

I build upon a model of product differentiation à la Hotelling (1929). My model includes 3

actors: users, a proprietary firm, and a FOSS coordinator; and 2 products: a proprietary

software, and a FOSS.

User-Developers (Users). There exists a unit mass of user-developers, referred to

simply as users. Users have heterogeneous preferences over the software features which

are uniformly distributed along a Hotelling line, x ∼ U(0, 1). Users choose between

consuming a proprietary software or a FOSS, denoted by i ∈ {p, o} respectively. The

utility users receive from each software is ui = vi − pi − t|Li − x|, where vi represents

the software quality, pi the price, Li the software’s location, and t > 0 the transport cost

associated with a poor match.

For simplicity, I assume all users are developers, and model user-developers. This implies

that individuals may choose to participate in the development of, and use, a FOSS,

or instead simply use a proprietary software. I relax this assumption in Section 7.1,

considering when users and developers are mutually exclusive groups.

Proprietary Firm. A proprietary firm produces an existing proprietary software, lo-

cated at one end of the Hotelling line, Lp = 0. The firm’s software quality is vp, which is

large enough to cover the market. It sets a price, pp, to maximise its profits, πp = pp×Dp,

where Dp is demand for the firm’s software.

Fixing the location and quality of the proprietary software reflects real-world development

roadmaps and release cycle, and the incremental nature of software quality.11 Moreover,

this simplification allows me to focus on addressing the development of FOSS.

Free and Open-Source Software (FOSS) The quality and location of a FOSS depend

on network effects. More users contributing to FOSS development leads to a quality

improving vertical network effect. However, users contribute only to software features

which interest them, this gives rise to a novel location shifting horizontal network effect.12

FOSS are inherently free, po = 0.13

The FOSS quality depends on the number of users, vo = vc+γDo, whereDo is its demand,

and vc represents the FOSS quality if the coordinator is it’s sole developer. To reduce

11Large software companies typically publish product roadmaps. For example, Microsoft publishes when
it plans to release features, and what features are in development (Microsoft, 2023a, 2023b).

12Network effects arise when user utility is affected by the number of other users. My main model
captures ‘direct’ network effects. In the general setting where users and developers are mutually
exclusive, network effects are ‘indirect’. See Belleflamme and Peitz (2015) for details.

13FOSS are free because anyone can download, build, and run its source code.

5



Free and Open-Source Software Robin Ng

parameters, I normalise vc = 0.14 Here, γ ∈ [0, 1] represents the probability that each

users’ contribution to the FOSS is unique. Because users are free to select what they

contribute, without coordination, redundant overlapping contributions occur. Since only

distinct contributions add value to the FOSS, only coordinated developments generate

network effects.

The FOSS location depends on it’s users’ preferences, Lo = 1 − l × Do, l ∈ (0, 1) is a

parameter regulating the FOSS’ location, Do = 1 − x̄ is the FOSS demand, where x̄ is

the marginal user indifferent between using the proprietary software and FOSS.15 Notice

that a larger l makes the location of the FOSS more sensitive to the marginal user’s

preferences. This reflects how more permissive FOSS licenses allow users to be more

involved in the design of the FOSS.

To understand the role FOSS licenses play, consider that a permissive license guaran-

tees the right of users to use, modify and redistribute the underlying source code. This

contrasts with restrictive licenses, which may grant limited rights - limiting the ability

of users to use the software.16 The freedom permissive licenses grant users, encourages

community involvement such as suggesting modifications and participating in develop-

ment.17 This way, I interpret l as the permissiveness of the license adopted by the FOSS,

and suppose it is fixed ex-ante.18

Coordinator. FOSS development requires a coordinator to organise user contributions,

higher levels of coordination ensures the distinctness of contributions, and coordinators

select this probability, γ ∈ [0, 1].

In the main model, I discuss a FOSS being coordinated by a self-interested Founder

who is unsatisfied with the existing proprietary software, seeking to maximise his private

utility as a user (Klug et al., 2021). Hence, the Founder is located at the opposite extreme

of the Hotelling line from the proprietary software. Further, since the Founder is also a

user, he maximises his own utility, πo = γ ×Do − t(1− Lo).
19

The sequence of events follows: The Founder chooses the probability that contributions

are distinct, γ. The proprietary firm sets its price, pp. Users decide between the propri-

etary software or the FOSS. The timing of the game reflects software development lead

time and the fluidity of software prices.

14More generally, vp > 0 can be read as the difference in quality between the proprietary software and
FOSS without network effects. If vp ≤ 0, the firm is inactive, see Etzion and Pang (2014) for details.

15Note x̄ arises from the covered market assumption, discussed below.
16Restrictive licenses may include prohibitions to modify, use for profit, or to harm others.
17When licenses are permissive, other developers may ‘fork’ or spin-off the FOSS, this incentivises coor-
dinators to be more responsive to community input. Denis Pushkarev (2023), the founder of core-js, a
standard library for JavaScript, describes this in his regular community update.

18Most FOSS adopt similar licenses meeting the standard set by the Open Source Initiative (2022).
GitHub (2023) also prominently promotes the MIT license. I explore this assumption in Section 7.2.

19This utility is identical to that of users located at 1.

6



Free and Open-Source Software Robin Ng

γ(1-x )

1-ℓ(1-x )

FOSS

x

Founder

0 1

Proprietary Software
vp

Users

Figure 1: An illustration of the model. The endogenous location and quality of FOSS are
highlighted in blue (Dashed). The utility of users is represented in red (Dotted).

Figure 1 provides a graphical representation of the model. This concludes the description

of the model environment. I look for a subgame perfect Nash equilibrium under the

following restrictions:

Restriction 1. The market is covered.

Restriction 2. Both the firm and the FOSS are active in the market.20

Since evidence suggests that many FOSS are developed in response to the needs of users

which cannot be met by existing software, these restrictions allow me to focus on the

situation where the proprietary software and FOSS serve as imperfect substitutes.

4 Coordinating Free and Open-Source Software

4.1 Users

In equilibrium, there exists a marginal user located at x̄ who is indifferent between the

proprietary software and the FOSS. All users to the left of x̄ use the proprietary software,

and all those to the right the FOSS. The indifferent user is pinned down by equation (1):

vp − pp − tx̄ = γDo − po − t|Lo − x̄|

vp − pp − tx̄ = γ(1− x̄)− po − t(1− l(1− x̄)− x̄)

x̄ =
vp − pp + po − γ + t(1− l)

t(2− l)− γ
. (1)

Intuitively, higher levels of coordination increases the marginal network effect (γ ↑),
improving the quality of the FOSS, ceteris paribus, this makes the FOSS more appealing

to users. To understand the role the FOSS license plays, more permissive licenses (l ↑)
makes the location of the software more sensitive to the marginal user. This lowers the

mismatch cost for the user when choosing to use the FOSS, ceteris paribus, permissive

20While not strictly necessary, this assumption allows me to study the more economically relevant situ-
ation where FOSS and proprietary software co-exist. I relax this assumption in Section 7.3.

7



Free and Open-Source Software Robin Ng

vo

Lo

FOSS

x

Founder

0 1

Proprietary Software
vp

Users

vo '

Lo 'x '

(a) A more permissive license increases the quality of the FOSS,
at fixed prices and level of coordination.

vo

Lo

FOSS

x

Founder

0 1

Proprietary Software
vp

Users

vo '

Lo 'x '

(b) Accounting for firm’s pricing strategies, lower prices lead to
a lower quality FOSS.

Figure 2: Dashed lines show the possible effect of a more permissive FOSS license.
The FOSS is represented in blue, and user surplus in red.

licenses make a FOSS more appealing to the marginal user.

4.2 Proprietary Firm

The firm maximises its profits by setting prices. In addition to the traditional forces

affecting pricing strategy in Hotelling models, network effects can cause the firm to set

lower prices. These effects are summarised in Lemma 1.

Lemma 1. The equilibrium price set by the proprietary firm strictly increases in its

quality and the price of the FOSS, and strictly decreases in the level of coordination of

the FOSS and permissiveness of the FOSS license.

p∗p =
vp + po − γ + t(1− l)

2
(2)

To understand the role of network effects, first consider how higher levels of FOSS coor-

dination improves its quality, which leads to a virtuous cycle of network effects where a

higher quality FOSS attracts even more users. This way, vertical network effects cause

the firm to face a stronger quality-based competition. Second, a more permissive FOSS

license means the location of the FOSS becomes more sensitive to the preferences of the

marginal user. As more users join the FOSS, it’s location shifts closer to the proprietary

software; as such, horizontal network effects promotes location-based competition. The

effect of a more permissive license, ceteris paribus, is represented in Figure 2a.

Since both network effects increase competition, the firm has a dual incentive to lower

prices and prevent the FOSS user base from becoming too large. When accounting for

the price strategy of the firm, equation (1) becomes

x̄ =
vp + po − γ + t(1− l)

2(t(2− l)− γ)
,

which is increasing in both γ and l if and only if vp > t. Hence, while the firm is able to

reduce competitive forces through lower prices, such prices can only improve demand if

8



Free and Open-Source Software Robin Ng

the firm has a sufficiently high quality. This overall effect is illustrated in Figure 2b.

Despite being able to gain a larger market share, firms competing with highly coordinated

FOSS or one with more permissive license earn less profit.

Corollary 1. Firm’s profit strictly decreases in the level of coordination of the FOSS and

permissiveness of the FOSS license.

πp =
(vp + po − γ + t(1− l))2

4(t(2− l)− γ)

These results indicate that even niche FOSS, serving small communities, can contribute

to a more competitive environment. Although the firm may obtain a large market share,

it lowers prices significantly to counteract the growth of the FOSS. This highlights the

limitations of using market concentration as a measure of competitiveness, similar to the

findings of Boone (2001).

4.3 Founder

Recall that the FOSS is free to use, po = 0, and the Founder maximise his utility:

πo = γ ×Do − t(1− Lo)

=
(γ − tl)(t(3− l)− vp − γ)

2(t(2− l)− γ)
.

The Founder decides on the probability that contributions are distinct, γ, which proxies

the level of coordination of the FOSS. This provides the first-order condition:

∂πo

∂γ
=

(γ − tl)(t(3− l)− vp − γ)

2(t(2− l)− γ)2
+

t(3− l)− vp − γ

2(t(2− l)− γ)︸ ︷︷ ︸
>0

− γ − tl

2(t(2− l)− γ)︸ ︷︷ ︸
<0

,

which highlights the Founder’s trade-off. On the one hand, there is an incentive to grow

the network of users. Doing so leverages the contributions of additional users to improve

the quality of the FOSS, and, by extension, his own utility. Hence, the Founder prefers

contributions to be somewhat distinct, γ > 0. This is shown in Figure 3a.

On the other hand, however, as more users join the network, the Founder faces two

opposing forces. First, the location of the FOSS shifts away from the Founder. This shift

results in a software that is less compatible with the Founder’s needs and preferences.

Hence, the Founder has less incentive to ensure unique contributions as doing so incurs

a higher mismatch cost, harming himself.

Second, the proprietary firm lowers prices in response to fiercer competition, allowing it

to retain users, and minimise the benefits the FOSS receives from network effects. When

9



Free and Open-Source Software Robin Ng

vo

Lo

FOSS

x

Founder

0 1

Proprietary Software
vp

Users

vo '

Lo 'x '

(a) At fixed prices, higher levels of coordination increase the
quality of the FOSS. Although the Founder faces higher trans-
portation cost, his surplus may increase.

vo

Lo

FOSS

x

Founder

0 1

Proprietary Software
vp

Users

vo '

Lo 'x '

(b) Accounting for firm’s pricing strategies, lower prices lead to
a lower quality FOSS which decreases Founder surplus.

Figure 3: Dashed lines show the possible effect of a higher level of coordination. The
FOSS is represented in blue, and user surplus in red.

the quality of the proprietary firm is sufficiently high, this leads the FOSS to lose users

as the Founder increases the level of coordination. Figure 3b illustrates the potential for

higher levels of coordination to decrease the Founder’s surplus.

Using this trade-off, I find there exists a unique subgame perfect Nash equilibrium that

satisfies Restrictions 1 and 2.

Proposition 1. Founders are active only if the proprietary software is of a sufficiently

low quality, (vp < t(3 − 2l)). Their level of coordination is weakly decreasing in the

permissiveness of the FOSS license (l ↑), and the quality of the proprietary software, and

strictly decreasing if contributions are not perfectly distinct (γ∗ < 1).

γ∗ = min{t(2− l)−
√

2t(vp − t)(1− l), 1}

with γ∗ = 1 ⇐⇒ 3t+ tl2

2(1−l)
+ 1

2t(1−l)
− 2−l

1−l
≥ vp and t > 1

2−l
.21

Although higher levels of coordination may improve FOSS quality, proposition 1 high-

lights how permissive licenses can cause the Founder to limit his coordination, hindering

the development of FOSS, through two channels. The first channel relates to the direct

incentives faced by the Founder. Since more permissive licenses allow other developers

to have a greater influence over the FOSS features, the FOSS location becomes more

sensitive to the marginal user. This increases the Founder’s mismatch cost, decreasing

his incentive to coordinate the FOSS development. The second channel relates to market

competition, where the proprietary firm lowers prices in response to a more permissive

FOSS license, Lemma 1. Lower prices allows the firm to capture a larger market share,

diminishing the FOSS ability to canvass network effects. The Founder, not wanting to

be a victim of his own success by posing a threat to the firm, decides on a lower level of

coordination.

21I consider γ∗ = 1 to be an edge case, as it is unrealistic to have perfect coordination. Hence, my
discussion in this paper focuses on the situation where γ ̸= 1.

10



Free and Open-Source Software Robin Ng

Corollary 2 contributes to a long-standing debate regarding the efficacy of permissive

licenses. Proponents argue that such licenses ease the rules of participation in the FOSS

community, minimising legal liability for coordinators and users, and make it easier for de-

velopers to work on FOSS (Gamblin, 2021).22 Detractors contend that overly permissive

licenses allow third parties to profiteer from public goods.23

Corollary 2 shows how permissive licenses may lead to an underdevelopment of FOSS,

depending on market conditions (vp and t), suggesting that differences in market con-

ditions can explain the variety of FOSS licenses in active use. Moreover, for a given

license, the activity of the Founder depends on market conditions. As market conditions

evolve, Founder’s activity may depend on selecting more restrictive licenses (such as in

the case of Paint.NET), failing which they may halt development—prominent examples

include leftpad, colors.js, faker.js, and core-js.24 Corollary 2 connects to these anecdotes

by providing a non-monetary mechanism supporting those who believe permissive FOSS

licenses may lead to unsustainable software development.

This highlights the continued challenges and problems with choosing and using boiler-

plate, one-size-fits-all licenses— such as the MIT license (Lerner & Tirole, 2002; Subra-

maniam, Sen, & Nelson, 2009).25

Corollary 2 also shows that more permissive FOSS licenses can lead to lower quality

FOSS that serve niche communities. This connects with empirical findings that many

FOSS remain of a low quality, and serve only niche markets, never becoming mainstream

(Lakhani & Hippel, 2004; Lerner & Tirole, 2005a; Robles, Steinmacher, Adams, & Treude,

2019). Corollary 2 explains that such niche FOSS could result from the choice of FOSS

license. In particular, permissive licenses incentivises the Founder to reduce coordination,

limiting the quality and scope, of the FOSS despite potential societal benefits. This

result is further illustrated by anecdotal evidence that most Founders approach FOSS

development with a ‘pet project’ mentality.

Corollary 2. Founders only coordinate FOSS when the license is not too permissive,

γ∗ > 0 ⇐⇒ l < l̄ = 3t−vp
2t

. As licenses become more permissive, the quality of the FOSS

decreases, and the FOSS obtains a smaller market share.

Proof. Founders are only active if vp < t(3− 2l) ⇐⇒ l < 3t−vp
2t

.

22Nicolas Suzor (2013) describes on opensource.com.
23Ideological supporters of digital sovereignty are concerned with firms repackaging the works of FOSS
(Sean Fleming, 2021; Benjamin Cedric Larsen, 2022). In a community update, Brewster (2009) explains
his decision to shift Paint.NET to a more restrictive license to prevent profiteering.

24See Chris Williams (2016); Chris Stokel-Walker (2014) for leftpad, Emma Roth (2022) for colors.js and
faker.js, and Denis Pushkarev (2023) for core-js.

25Almeida, Murphy, Wilson, and Hoye (2017) show how developers have a difficulty understanding the
differences, and choosing, between FOSS licenses. Instead, turning to tools such as choosealicense.com
and license.md. See Janis Lesinski (2020) a detailed discussion on the problems with the MIT license.

11



Free and Open-Source Software Robin Ng

In equilibrium, vo and equation (1) become vo = γ(1 − x̄) and x̄ = vp−γ∗+t(1−l)

2(t(2−l)−γ∗)
. Thus

∂x̄
∂l

= t(vp−t)2

2(2t(vp−t)(1−l))
3
2
and ∂vo

∂l
= ∂γ

∂l
(1− x̄)− ∂x̄

∂l
γ, focusing on the edge case where γ∗ < 1,

this implies vp > t and therefore ∂x̄
∂l

> 0. Since ∂γ
∂l

≤ 0 (Proposition 1), ∂vo
∂l

< 0.

Having described the trade-offs faced by the Founder, and understanding the effects FOSS

licenses have on the equilibrium, I now consider how more permissive FOSS licenses can

affect the distribution of surplus.

4.4 Surplus Analysis

Corollary 3. When FOSS coordinated by Founders have more permissive licenses:

• User surplus generated by the FOSS strictly decreases.

• User surplus generated by the proprietary software strictly increases.

• Firm’s profits strictly decreases. (Corollary 1)

The first result in Corollary 3 describes surplus of FOSS users, and arises for two reasons.

First, the decrease in surplus is directly caused by the reduction in the number of FOSS

users (Corollary 2). Second, with fewer FOSS users, there is an indirect decrease in the

quality of the FOSS.

A more permissive license means that more users opt for the proprietary software, leading

to an increase in user surplus contributed by its consumption as l increases. Moreover,

the firm lowers prices (Lemma 1), which also increases the surplus of proprietary software

users. This explains the second result in Corollary 3 and highlights how the presence of

a niche FOSS generates competition to the benefit of proprietary software users.

This concludes the analysis of self-interested Founders acting as coordinators of FOSS.

In the following sections, I consider the behaviour of volunteering Altruist, and profit-

driven Manager as coordinators of FOSS, contrasting those findings with the results about

Founders.

5 Altruists

The literature notes social preferences as an important motivation for contributing to

and managing FOSS: Hars and Ou (2002) suggests that developers are often motivated

by building a sense of community, and Lerner and Tirole (2002) state that altruism is

a main motivation reported by developers. Because many large FOSS communities are

user managed, this arguably implies that such coordinators (as individuals or a group)

are motivated by altruism.26 Therefore, Altruists are more likely to consider how their

26Raymond (1999) also writes about the altruistic motivation of coordinators. The Apache Software
Foundation (2023a); The Document Foundation (2023); The Linux Foundation (2023) are examples of
FOSS foundations governed by volunteers.

12



Free and Open-Source Software Robin Ng

choices affects other FOSS users. To model this, I consider a coordinator that maximises

the total utility of FOSS users by selecting a level of coordination.

This model follows directly from the main model, with the following modification: Instead

of a self-interested Founder maximising his own utility, the coordinator is made up of

volunteering Altruists seeking to maximise the value of the FOSS for its users. The

FOSS continues to be free to use, po = 0. This means Altruists are maximises the total

utility of FOSS users:

πA
o =

∫ 1

x̄

uo(x)dx =

∫ 1

x̄

vo − t|Lo − x|dx.

Since this modification does not alter the behaviour of users and the proprietary firm,

results about users and the proprietary firm from Sections 4.1 and 4.2 still hold. Taking

into account the equilibrium decisions of users and firms,

πA
o =

(2γ − t(1− 2l + 2l2))(vp + γ − t(3− l))2

8(t(2− l)− γ)2
.

Where coordinators are Altruists, I find there exists a unique subgame perfect Nash

equilibrium, satisfying Restrictions 1 and 2.

Proposition 2. Altruists are active only if the proprietary software has a sufficiently

low quality (vp < t5−2l2

2
). Their level of coordination weakly decreases in the proprietary

software’s quality, decreasing strictly if contributions are not perfectly distinct (γA < 1).

γA = min

{
t(3− 2l) + vp −

√
(vp − t)(11t− 8tl2 + vp)

2
, 1

}

with γA = 1 ⇐⇒ vp ∈ (t, 1+t2(5−3l−l2)−t(3−2l)
1+t(1+l−2l2)

], and t > 1
2−l

.

Like the Founder, Altruists are only active if the FOSS license is sufficiently restrictive,

vp < t5−2l2

2
⇐⇒ l <

√
5t−2vp

2t
. Intuitively, Altruists face similar trade-offs as the

Founder. However, they are concerned with minimising the total cost to users, rather

than the cost of a specific user (the Founder located at 1). In particular, when more users

contribute to the FOSS, total mismatch cost increases.

Unlike Founders, Altruists level of coordination is non-monotone in license permissiveness.

In addition to the firm’s strategy of setting lower prices in response to more permissive

licenses, the adoption of a more permissive license has two contrasting effects on FOSS

users. For intuition, fix the price of the proprietary software. A more permissive license

causes FOSS features to be further away from 1, increasing the mismatch cost of those

closer to 1. Moreover, permissive licenses attract more users, which improve the quality of

13



Free and Open-Source Software Robin Ng

the FOSS. Hence, more permissive licenses also means the marginal user has preferences

for features which are more different from the FOSS. Therefore, Altruists’ decision on the

level of coordination is non-monotone in license permissiveness.

5.1 Surplus Analysis

Because Founders and Altruists have similar comparative statics (see Propositions 1

and 2), comparative statics on how more permissive licenses affect surplus are qualita-

tively identical to the situation when FOSS are coordinated by self-interested Founders.

When the FOSS has a more permissive license, Corollary 4 shows that FOSS user surplus

weakly decreases, proprietary software user surplus strictly increases, and the firm makes

less profit.

Corollary 4. When FOSS coordinated by Altruists have more permissive licenses:

• User surplus generated by the FOSS weakly decreases.

• User surplus generated by the proprietary software strictly increases.

• Firm’s profits strictly decreases. (Corollary 1)

Funding FOSS Many governments have been increasing financial support for the use

and development of FOSS.27 Comparing the surplus generated by different coordinators

can provide some insight on the efficiency of how such funds are distributed.

Corollary 5 suggests that funding Founders could be more efficient than Altruists, and

FOSS coordinated by Founders lead to higher total surplus. The intuition follows directly

from the virtuous cycle of network effects: Higher levels of coordination improves quality,

which allows the network to grow, further improving quality. Founders prefer higher levels

of coordination than Altruists, thus the FOSS benefits more from these network effects.

Since the surplus generated by the firm is constant, the increase in surplus generated by

the FOSS causes total surplus to increase.

Corollary 5. Founders prefer a higher level of coordination than Altruists, thus gener-

ating a higher total surplus.

Since more permissive licenses lead a smaller demand for FOSS, Corollary 3 and 4 suggest

the success of FOSS funding should not be judged by the number of FOSS users. Instead,

even small and niche FOSS may create significant competitive threats, driving down prices

of proprietary software; and improve user and total surplus. Additionally, Corollary 5

highlights how funding should perhaps be directly placed in the hands of Founders, instead

of through umbrella funding organisations.

27For example to promote independence from large corporations or to ensure competition in the market
(Sean Fleming, 2021; Paulina Grzegorzewska, 2021; Benjamin Cedric Larsen, 2022).

14



Free and Open-Source Software Robin Ng

6 Profit-Driven Managers

Many prominent FOSS coordinators, such as Google and IBM, are motivated by profit.

To monetise FOSS, these companies may charge for additional features and services, or

earn profit through the sale of user data. In this section, I investigate how the profit-

driven motive affects the coordination of FOSS.

To model profit-driven Managers as FOSS coordinators, I modify the main model to

allow Managers to set prices and the level of coordination. Managers maximise πM
o =

po · Do, where Do = 1 − x̄ is the demand of the FOSS, and po it’s price. The timing of

the game follows: (i) Managers select their level of coordination, γ; (ii) Managers and

the proprietary firm simultaneously set prices, po and pp respectively; (iii) users decide

between the FOSS or the proprietary software.

Taking into account the equilibrium decisions of users, equation (1) becomes

πM
o =

po(pp + t− vp − po)

t(2− l)− γ
.

It is immediate that profits are concave in prices, and the optimal prices are

pMo =
t(3− l)− γ − vp

3

pMp =
vp − 2γ + t(3− 2l)

3
.

Higher levels of coordination should lead to higher quality products. Despite this, Man-

agers choose lower prices when selecting a higher level of coordination. This is because

lower prices allow Managers to attract more users, complementing the higher level of

coordination. This allows FOSS quality to improve, which attracts more users, foster-

ing a cycle of network effects. Together, both pricing strategies show how higher levels

of coordination can lead to a more competitive environment, as Managers and the firm

engage in fiercer price competition.

Taking into account equilibrium prices, the demand for proprietary software becomes

x̄ =
t(3− 2l) + vp − 2γ

3(t(2− l)− γ)
,

where ∂x̄
∂γ

> 0 ⇐⇒ vp > t. Hence, in response to higher levels of coordination by

Managers, the firm is only able to use prices to gain market share if it’s software has a

sufficiently high quality (vp > t). Lower prices allows the firm to capture a directly appeal

to users, and indirectly diminish the quality, and horizontal competition, of the FOSS.

However, when the quality of the proprietary software is low (vp < t), the mismatch cost

15



Free and Open-Source Software Robin Ng

faced by users is too large; this diminishes the firm’s ability to use prices to gain market

share.

Since selecting a higher level of coordination increases the FOSS user base if and only if

the proprietary software has a sufficiently low quality, Managers only select a high level of

coordination in such cases, where the gain in revenue from a larger user base dominates

any loss that arises from lower per-unit prices. Otherwise, Managers prefer lower levels

of coordination, and a low marginal network effect, as this diminishes competitive forces,

allowing the FOSS to have a larger user base. Proposition 3 formalises this result.

Proposition 3. Managers are active only if the FOSS has a sufficiently permissive li-

cense (l ≥ 3t−2
2t

). When active, profit-driven Managers choose between binary levels of

coordination:

• They prefer distinct contributions, γM = 1, when the proprietary software is of a

low quality, vp ≤ t.

• They prefer the most overlap, γM = max{t, t(1.5 − l)}, when the proprietary soft-

ware has a high quality, vp > t.

They prefer distinct contributions (γM = 1) when the proprietary software is low quality

(vp < t). When the proprietary software is high quality (vp ≥ t), Managers choose the

lowest level of coordination (γM = max{t, t(1.5− l)}) for which users continue to use the

FOSS.

To open-source or not? Practically, Proposition 3 has two implications. First, when

faced with costly coordination, and against a high quality proprietary software, Managers

may take advantage of more permissive FOSS licenses, which allows the FOSS features

to appeal to more users, while lowering their level of coordination to make more profit.

Second, and perhaps more importantly, Proposition 3 helps understand when managers

may adopt an open-source business model. This can be illustrated by the competition in

the internet browser market between Microsoft and Google.

Browser Wars 2.0 In 2008, the leading internet browser was Microsoft’s Internet Ex-

plorer (IE). This was thought to be an increasingly frustrating and outdated browser,

unable to meet the growing demands by websites and users. At the same time, users

were being exposed to better user interfaces and user experiences.28 This reflects a mar-

ket where vp < t.

Around this time, Google adopted a code-release strategy for its new browser, Chrome.

Chromium, the FOSS upon which Chrome is built, was able to benefit from the con-

tributions of external developers, and provide a better perspective of the features users

28This is documented on Android Authority and The Verge (Luke Little, 2021; Tom Warren, 2018).

16



Free and Open-Source Software Robin Ng

desired.29 My model suggests that this code-release strategy can be justified by a specific

market environment: where the proprietary software has a low quality, and users mis-

match cost is high. In other words, vp < t. When this is the case, code-releasing allows

the FOSS to capture a larger market share. Therefore, capturing closely how Chrome

managed to become a market leader in under 3 years.30

6.1 Surplus Analysis

Corollary 6 shows how profits of Managers, the firm, and users surplus change as the

FOSS license becomes more permissive. Because of Managers’ pricing strategies, user

surplus generated by each software is non-monotone in license permissiveness, hence I

am only able to describe the decrease in total user surplus.

Corollary 6. When FOSS coordinated by Managers have more permissive licenses:

• Total user surplus strictly decreases.

• Proprietary firm’s profit weakly decreases, strictly decreasing if l ≥ 0.5 or γM = 1.

(Corollary 1)

• Managers’ profits:

– Weakly decreases if γM < 1, strictly decreasing when l ≥ 0.5.

– Strictly increases when γM = 1.

Corollary 6 shows that Managers can benefit from more permissive FOSS licenses when

the proprietary software has a sufficiently low quality, and how more permissive licenses

always harm users when Managers coordinate FOSS development.

Defining Open-Source Licenses Following the surplus analyses, a curious question

arises: Founders and Altruists do not benefit from more permissive FOSS licenses (Corol-

lary 3 and 4). Instead, only Managers do so. Although this is the case, The Open Source

Initiative (OSI), “the authority that defines Open Source”, permits only highly permis-

sive FOSS licenses as ‘Open-Source’. Hence, my model highlights the potential influence

commercial institutions have on the OSI, and suggests that the OSI’s incentives may be

potentially skewed in favour of Managers.

7 Extensions

In this section, I provide a series of extensions, considering the situations where: (i) users

and developers are mutually exclusive groups; (ii) Founders decide on a license instead

of level of coordination; (iii) there exists a monopoly of either a FOSS or proprietary

software; (iv) developers have heterogeneous skill levels. Proofs are in Appendix B.

29Making Chromium’s code open-source corresponds to adopting a permissive license, l ≥ 3t−2
2t .

30As tracked by Statcounter (2022).

17



Free and Open-Source Software Robin Ng

7.1 Non-User Developers

I begun with a model where users are also developers. Here, I consider the opposite ex-

treme, where users and developers are mutually exclusive groups. In practice, developers

are often a subset of users, and the groups do not perfectly overlap nor are they mutually

exclusive. In showing these extremes, I expect that when developers are a subset of users,

such a model will sit in-between the results shown here and in the main model.

In this model, users utility is ui = vi−pi−t|Li−x|. vi captures the quality of the software,

in particular vo = γ ·Dd where γ is the coordinator’s effort to manage developers and Dd

is the mass of developers.

Suppose developers exhibit preferences o ∼ U(0, 1) along the same Hotelling line as users.

Their utility is wo = so − k|Lo − o|, so captures benefit to the developer, k > 0 the cost

associated with working on a FOSS with features they do not prefer. As suggested in

the literature, developers may be motivated by skill development, and recognition both

within the community and outside the community (Hars & Ou, 2002; Mustonen, 2003; Li,

Tan, & Teo, 2012). The opportunities to work on complex tasks, or to gain prominence

demand on the number of users of a FOSS. Hence, so = β · Do, where β proxies the

prominence and recognition each additional FOSS user brings, and Do the mass of users.

I focus on FOSS coordinated by a Founder, located at 1, who is motivated as a developer.

Hence, his objective function is πo = β ·Do − k(1− Lo).

The timing of the game is identical to the main model, Founders choose the level of

coordination, γ, proprietary firm sets the price, pp, users and developers simultaneously

decide between consuming the proprietary software or the FOSS and contributing to the

FOSS respectively.

Proposition 4. Founders only coordinate FOSS in one of the following two situations:

• Proprietary software is low quality, vp < t and the FOSS license is restrictive l < 1
2
;

• Proprietary software is high quality, vp > t and the FOSS license is permissive

l > 1
2
,

preferring distinct contributions when they do so, γD = 1.

Proposition 4 finds that Founders always prefer unique contributions when they are active.

However, they are only active when the quality of the proprietary software is high (low)

and the FOSS license more permissive (restrictive). For intuition, if the proprietary

software is high quality, it is more difficult to attract users. Since vertical network effects

are fixed, Founders can only use horizontal network effects to attract users, and are only

active if the FOSS license is more permissive.

18



Free and Open-Source Software Robin Ng

7.2 Founder’s License Choice

In the main model, I assumed coordinators are unable to influence the license adopted

by a FOSS. I consider this a realistic setting because many developers are told to adopt

‘standard’ FOSS licenses such as the MIT license. Moreover, unlike coordination , once

a license has been selected, it is sticky. Hence, as the market environment changes, or as

coordination changes hands, licenses are entrenched, and it is more interesting to focus

on how the level of coordination evolves.

However, it may be interesting to understand the choice of FOSS license at its inception.

To capture the initial license decision, I consider the situation where Founders does not

select the level of coordination, instead selecting the permissiveness of the license adopted

by the FOSS.

Proposition 5. Founders choice of FOSS license is binary. Founders prefer the most

permissive license only when the proprietary software has a sufficiently high quality and

the marginal quality network effect (γ) sufficiently small.31 Otherwise, Founders prefer

the most restrictive license (l = 0).

Proposition 5 shows that Founders only select permissive licenses when vertical network

effects are too small and the FOSS relies on horizontal network effects to compete with

a high quality proprietary software for users.

This result also provides some support for a recommending permissive FOSS licenses. Be-

cause FOSS sometimes face competition form high quality proprietary software, a highly

permissive license might be necessary to acquire a critical mass of developers. Hence, se-

lecting a permissive license best allows Founders to take advantage of the virtuous cycle

of network effects.

7.3 Monopolistic Market

I searched for an equilibrium where a duopoly exists (Restriction 2). While this provides

for a rich analysis, there exists some markets where FOSS, or proprietary software do

not exist. Here, I relax Restriction 2, and describe the market conditions in which a

monopoly is formed.

Corollary 7. Founders and Altruists never form monopoly. Managers are monopolists

when the quality of the proprietary software is low, vp ≤ t(2l − 1), and proprietary firms

are monopolists whenever the quality of the proprietary software is high, vp ≥ t(3− l).

I show FOSS coordinated by Founders and Altruists are never able to form a monopoly.

Such coordinators attempt to minimise some function of mismatch cost, and intrinsically

31Mathematically, vp > t2(6−4l+l2)+γ2−2tγ(3−l)
2(t−γ) and t > γ.

19



Free and Open-Source Software Robin Ng

concern themselves with the outcome of individuals with extreme preferences, located at

1. Hence, never choose to form a monopoly as this would increase the mismatch cost of

those with extreme preferences.

On the other hand, Managers do not directly concern themselves with mismatch costs.

Instead, they seek a balance between demand and prices, both of which decrease in vp.

Hence, when the proprietary software has a sufficiently low quality, Managers are able to

capture more market share, improving the FOSS quality, and raising prices.

7.4 Skilled Users

Lerner and Tirole (2002) observes that Founders and developers of FOSS tend to be highly

skilled. To reflect this observation, I propose the following modification: Developers are

heterogeneous in skill level and this is uniformly distributed according to their location

along the Hotelling line. In other words, developers located closer to 1 have a higher

ability, normalised to α > 0 at 1, and those further away lower ability, where the user

located at 0 has 0 ability. I assume that if a developer chooses to contribute to the FOSS,

their ability limits the level of their contribution.

This brings about two effects. First, the value of the software is dependent on the

total skill of developers, with developers located closer to 1 generating more value, while

those further away generate less value. This means the value of the FOSS is vo =

γ
∫ α

αx̄
x
α
dx = γ α(1−x̄2)

2
. Second, because developers with a higher skill level are more

likely to contribute to more components/critical components of the software, the location

of the software is more affected by their output. This means the FOSS is located at

Lo = 1− l
∫ α

αx̄
x
α
dx = 1− α(1−x̄2)

2
.

Proposition 6. When users have heterogeneous skill levels, Founders prefer unique con-

tributions, γS = 1.

Proposition 6 suggests that when there are heterogeneous skill levels, with more skilled

developers located further away from the proprietary software, Founders prefers unique

contributions. This is because the location of the software shifts less for each additional

developer than in the base model. As such, the mismatch cost to Founders increases at

a lower rate than the base model, and Founders prefer more distinct contributions.

8 Conclusion

This paper provides a first look at a model which accounts for the diverse motivations of

participants in Free and Open-Source Software development. I show that FOSS Founders

and Altruistic members of the FOSS community only coordinate FOSS if the FOSS license

is sufficiently restrictive. When they do so, Founders prefer higher levels of coordination,

suggesting they are more effective at coordinating FOSS than Altruists. Given limited re-

20



Free and Open-Source Software Robin Ng

sources, FOSS funders should carefully consider the intrinsic motivations of coordinators,

and may choose to prioritise Founders over Altruists.

Profit-driven Managers, however, only coordinate FOSS if its license is sufficiently per-

missive. Managers prefer high levels of coordination if the FOSS competes with a low

quality proprietary software, but only a minimal level of coordination when the propri-

etary software is high quality. This finding aligns closely with the development of Chrome

and Android, potentially explaining when large corporations choose to participate in and

how they coordinate FOSS development.

Most FOSS adopt permissive licenses that conform to the standards prescribed by the

Open Source Initiative. This paper shows that only Managers benefit from more per-

missive FOSS licenses, while coordinators with other incentives and FOSS users can be

harmed. Hence, suggesting that the promotion and extensive use of one-size-fits-all,

highly permissive licenses, might reflect corporate influence on the FOSS community.

Indeed, many corporations are heavily invested into FOSS which can be seen in the

widespread effect of the Log4j vulnerability (Michael Hill, 2022), the xkcd comic on the

dependence on FOSS32, and Microsoft’s development of the internet browser Edge33 Ad-

ditionally, the normalisation of highly permissive licenses leads to the underdevelopment

of FOSS by Founders and Altruists; to foster their contributions to FOSS, the use of

customised licenses, tailored to each FOSS, should be encouraged instead.

My model considers how developing FOSS features affects it’s location, but does not

account for how software features can be complementary, or how coordinators may employ

other mechanisms to limit the FOSS location. Further, a static model allows for many

tractable results, but ignores the dynamic nature of FOSS development where developers

can fork (spin-off) an existing FOSS into a competing software. I also abstract from an

environment with costly coordination which would reduce the level of FOSS coordination.

To better understand these and other nuances related to FOSS development, different

approaches may need to be taken.

At its heart, through the use of horizontal network effects, this model captures how

collective outcomes are shaped by individual inputs. In addition to FOSS, vertical and

horizontal network effects co-exist in many other applications such as the development

of large language models, social movements and political activism, crowd-sourcing and

resource sharing, and online communities. I leave such applications for future research.

32See the comic here https://xkcd.com/2347/.
33Microsoft adopted, and became a main contributor of, Chromium in the lead up to the launch of
Microsoft Edge, marking a new era of Browser wars.

21

https://xkcd.com/2347/


Free and Open-Source Software Robin Ng

References

Almeida, D. A., Murphy, G. C., Wilson, G., & Hoye, M. (2017). Do software developers

understand open source licenses? In 2017 ieee/acm 25th international conference

on program comprehension (icpc) (pp. 1–11).

Andersen-Gott, M., Ghinea, G., & Bygstad, B. (2012). Why do commercial companies

contribute to open source software? International journal of information manage-

ment , 32 (2), 106–117.

André Staltz. (2019). Software below the poverty line. Retrieved 2023-05, from https://

staltz.com/software-below-the-poverty-line.html

Athey, S., & Ellison, G. (2014). Dynamics of open source movements. Journal of

Economics & Management Strategy , 23 (2), 294–316.

August, T., Chen, W., & Zhu, K. (2021). Competition among proprietary and open-

source software firms: The role of licensing in strategic contribution. Management

Science, 67 (5), 3041–3066.

Belleflamme, P., & Peitz, M. (2015). Industrial organization: markets and strategies.

Cambridge University Press.

Benjamin Cedric Larsen. (2022). The geopolitics of ai and the rise of digital

sovereignty. Retrieved 2023-03, from https://www.brookings.edu/articles/

the-geopolitics-of-ai-and-the-rise-of-digital-sovereignty/

Boone, J. (2001). Intensity of competition and the incentive to innovate. International

Journal of Industrial Organization, 19 (5), 705–726.

Brewster, R. (2009). A new license for paint.net v3.5. Retrieved 2023-03, from https://

blog.getpaint.net/2009/11/06/a-new-license-for-paintnet-v35/

Casadesus-Masanell, R., & Ghemawat, P. (2006). Dynamic mixed duopoly: A model

motivated by linux vs. windows. Management Science, 52 (7), 1072–1084.

Chris Stokel-Walker. (2014). The internet is being protected by two guys named

steve. Retrieved 2023-05, from https://www.buzzfeed.com/chrisstokelwalker/

the-internet-is-being-protected-by-two-guys-named-st

Chris Williams. (2016). How one developer just broke node, babel and thousands of projects

in 11 lines of javascript. Retrieved 2023-05, from https://www.theregister.com/

2016/03/23/npm left pad chaos/

Denis Pushkarev. (2023). 2023-02-14-so-whats-next.md. Retrieved 2023-05,

from https://github.com/zloirock/core-js/blob/master/docs/2023-02-14

-so-whats-next.md

Emma Roth. (2022). Open source developer corrupts widely-used libraries, affecting tons

of projects. The Verge. Retrieved 2022-10, from https://www.theverge.com/

2022/1/9/22874949/developer-corrupts-open-source-libraries-projects

-affected

22

https://staltz.com/software-below-the-poverty-line.html
https://staltz.com/software-below-the-poverty-line.html
https://www.brookings.edu/articles/the-geopolitics-of-ai-and-the-rise-of-digital-sovereignty/
https://www.brookings.edu/articles/the-geopolitics-of-ai-and-the-rise-of-digital-sovereignty/
https://blog.getpaint.net/2009/11/06/a-new-license-for-paintnet-v35/
https://blog.getpaint.net/2009/11/06/a-new-license-for-paintnet-v35/
https://www.buzzfeed.com/chrisstokelwalker/the-internet-is-being-protected-by-two-guys-named-st
https://www.buzzfeed.com/chrisstokelwalker/the-internet-is-being-protected-by-two-guys-named-st
https://www.theregister.com/2016/03/23/npm_left_pad_chaos/
https://www.theregister.com/2016/03/23/npm_left_pad_chaos/
https://github.com/zloirock/core-js/blob/master/docs/2023-02-14-so-whats-next.md
https://github.com/zloirock/core-js/blob/master/docs/2023-02-14-so-whats-next.md
https://www.theverge.com/2022/1/9/22874949/developer-corrupts-open-source-libraries-projects-affected
https://www.theverge.com/2022/1/9/22874949/developer-corrupts-open-source-libraries-projects-affected
https://www.theverge.com/2022/1/9/22874949/developer-corrupts-open-source-libraries-projects-affected


Free and Open-Source Software Robin Ng

Etzion, H., & Pang, M.-S. (2014). Complementary online services in competitive markets:

Maintaining profitability in the presence of network effects. Mis Quarterly , 38 (1),

231–248.

Fainmesser, I. P., & Galeotti, A. (2020). Pricing network effects: Competition. American

Economic Journal: Microeconomics , 12 (3), 1–32.

Fielding, R. T. (1999). Shared leadership in the apache project. Communications of the

ACM , 42 (4), 42–43.

Franke, N., & Von Hippel, E. (2003). Satisfying heterogeneous user needs via innovation

toolkits: the case of apache security software. Research policy , 32 (7), 1199–1215.

Gamblin, T. (2021). Picking an open source license at llnl: Guidance and recommenda-

tions from the computing directorate (Tech. Rep.). Livermore, CA (United States):

Lawrence Livermore National Lab.(LLNL).

Gaudeul, A. (2005). Public provision of a private good: What is the point of the bsd

license? Available at SSRN 933631 .

Gaudeul, A. (2008). Open source licensing in mixed markets, or why open source software

does not succeed. CCP Working Paper .

GitHub. (2023). Choose an open source license. Retrieved 2023-05, from https://

choosealicense.com/

Hars, A., & Ou, S. (2002). Working for free? motivations for participating in open-source

projects. International journal of electronic commerce, 6 (3), 25–39.

Hotelling, H. (1929). Stability in competition. The Economic Journal , 39 (153), 41–57.

Janis Lesinski. (2020). The mit licence is community hostile. Retrieved 2023-05, from

https://www.lesinskis.com/MIT-licence-community-hostile.html

Johnson, J. P. (2002). Open source software: Private provision of a public good. Journal

of Economics & Management Strategy , 11 (4), 637–662.

Johnson, J. P. (2006). Collaboration, peer review and open source software. Information

Economics and Policy , 18 (4), 477–497.

Klug, D., Bogart, C., & Herbsleb, J. D. (2021). “they can only ever guide” how an open

source software community uses roadmaps to coordinate effort. Proceedings of the

ACM on Human-Computer Interaction, 5 (CSCW1), 1–28.

Lakhani, K. R., & Hippel, E. v. (2004). How open source software works:“free” user-to-

user assistance. In Produktentwicklung mit virtuellen communities (pp. 303–339).

Springer.

Lerner, J., & Tirole, J. (2002). Some simple economics of open source. The journal of

industrial economics , 50 (2), 197–234.

Lerner, J., & Tirole, J. (2005a). The economics of technology sharing: Open source and

beyond. Journal of Economic Perspectives , 19 (2), 99–120.

Lerner, J., & Tirole, J. (2005b). The scope of open source licensing. Journal of Law,

Economics, and Organization, 21 (1), 20–56.

23

https://choosealicense.com/
https://choosealicense.com/
https://www.lesinskis.com/MIT-licence-community-hostile.html


Free and Open-Source Software Robin Ng

Li, Y., Tan, C.-H., & Teo, H.-H. (2012). Leadership characteristics and developers’

motivation in open source software development. Information & Management ,

49 (5), 257–267.

Luke Little. (2021). Google chrome: Its history and rise to market domination.

Retrieved 2022-11, from https://www.androidauthority.com/google-chrome

-history-1025602/

Madiega, T. A. (2020). Digital sovereignty for europe. EPRS: European Parliamentary

Research Service.

Michael Hill. (2022). The apache log4j vulnerabilities: A timeline. Re-

trieved 2023-03, from https://www.csoonline.com/article/571797/

the-apache-log4j-vulnerabilities-a-timeline.html

Michlmayr, M., Hunt, F., & Probert, D. (2007). Release management in free software

projects: Practices and problems. In Open source development, adoption and inno-

vation: Ifip working group 2.13 on open source software, june 11–14, 2007, limerick,

ireland 3 (pp. 295–300).

Microsoft. (2023a). Microsoft 365 roadmap. Retrieved 2023-05, from https://www

.microsoft.com/en-gb/microsoft-365/roadmap?filters=

Microsoft. (2023b). Microsoft release cycle. Retrieved 2023-05, from https://learn

.microsoft.com/en-us/windows/deployment/update/release-cycle

Mustonen, M. (2003). Copyleft—the economics of linux and other open source software.

Information Economics and Policy , 15 (1), 99–121.

Nicolas Suzor. (2013). What motivates free software developers to choose between copyleft

and permissive licences? Retrieved 2023-05, from https://opensource.com/law/

13/8/motivation-free-software-licensing

Open Source Initiative. (2022). Licenses & standards. Retrieved 2022-11, from https://

opensource.org/licenses

Paulina Grzegorzewska. (2021). Parlimentary mission supports open source. Re-

trieved 2023-03, from https://joinup.ec.europa.eu/collection/open-source

-observatory-osor/news/french-report-digital-sovereignty

Raymond, E. (1999). The cathedral and the bazaar. Knowledge, Technology & Policy ,

12 (3), 23–49.

Robles, G., Steinmacher, I., Adams, P., & Treude, C. (2019). Twenty years of open

source software: From skepticism to mainstream. IEEE Software, 36 (6), 12–15.

Sean Fleming. (2021). What is digital sovereignty and why is europe so interested in

it? Retrieved 2023-03, from https://www.weforum.org/agenda/2021/03/europe

-digital-sovereignty/

Shah, S. K. (2006). Motivation, governance, and the viability of hybrid forms in open

source software development. Management science, 52 (7), 1000–1014.

Shy, O., & Thisse, J.-F. (1999). A strategic approach to software protection. Journal of

24

https://www.androidauthority.com/google-chrome-history-1025602/
https://www.androidauthority.com/google-chrome-history-1025602/
https://www.csoonline.com/article/571797/the-apache-log4j-vulnerabilities-a-timeline.html
https://www.csoonline.com/article/571797/the-apache-log4j-vulnerabilities-a-timeline.html
https://www.microsoft.com/en-gb/microsoft-365/roadmap?filters=
https://www.microsoft.com/en-gb/microsoft-365/roadmap?filters=
https://learn.microsoft.com/en-us/windows/deployment/update/release-cycle
https://learn.microsoft.com/en-us/windows/deployment/update/release-cycle
https://opensource.com/law/13/8/motivation-free-software-licensing
https://opensource.com/law/13/8/motivation-free-software-licensing
https://opensource.org/licenses
https://opensource.org/licenses
https://joinup.ec.europa.eu/collection/open-source-observatory-osor/news/french-report-digital-sovereignty
https://joinup.ec.europa.eu/collection/open-source-observatory-osor/news/french-report-digital-sovereignty
https://www.weforum.org/agenda/2021/03/europe-digital-sovereignty/
https://www.weforum.org/agenda/2021/03/europe-digital-sovereignty/


Free and Open-Source Software Robin Ng

Economics & Management Strategy , 8 (2), 163–190.

Statcounter. (2022). Desktop browser market share worldwide. Retrieved

2022-11, from https://gs.statcounter.com/browser-market-share/desktop/

worldwide#monthly-200901-202210

Subramaniam, C., Sen, R., & Nelson, M. L. (2009). Determinants of open source software

project success: A longitudinal study. Decision Support Systems , 46 (2), 576–585.

The Apache Software Foundation. (2023a). Apache corporate governance. Retrieved

2023-03, from https://www.apache.org/foundation/governance/

The Apache Software Foundation. (2023b). Foundation reports and statements. Retrieved

2023-05, from https://www.apache.org/foundation/reports.html

The Document Foundation. (2023). The document foundation. Retrieved 2023-03, from

https://www.documentfoundation.org/governance/bodies/

The Linux Foundation. (2023). Linux foundation leadership teams. Retrieved 2023-03,

from https://www.linuxfoundation.org/about/leadership

Tom Warren. (2018). Google’s chrome browser is now 10 years old. Retrieved 2022-11,

from https://www.theverge.com/2018/9/2/17811844/google-chrome-browser

-10-years-history

25

https://gs.statcounter.com/browser-market-share/desktop/worldwide#monthly-200901-202210
https://gs.statcounter.com/browser-market-share/desktop/worldwide#monthly-200901-202210
https://www.apache.org/foundation/governance/
https://www.apache.org/foundation/reports.html
https://www.documentfoundation.org/governance/bodies/
https://www.linuxfoundation.org/about/leadership
https://www.theverge.com/2018/9/2/17811844/google-chrome-browser-10-years-history
https://www.theverge.com/2018/9/2/17811844/google-chrome-browser-10-years-history


Free and Open-Source Software Robin Ng

Appendix A Proofs

Proof of Lemma 1. To find the equilibrium price of the proprietary software,

πp = pp · x̄

= pp
vp − pp + po − γ + t(1− l)

t(2− l)− γ

Notice that for an interior profit maximising solution, t(2− l)− γ > 0 is required. This

ensures that ∂2πp

∂p2p
< 0, and implies that vp − pp + po − γ + t(1− l) > 0.

Therefore, p∗p =
vp+po−γ+t(1−l)

2
. Restriction 2 then implies

t(2− l)− γ > 0 (3)

vp + po + t(1− l)− γ > 0 (4)

t(3− l)− po − vp − γ > 0 (5)

I now show that p∗p increases in vp and po, and decreases in γ and l:

∂p∗p
∂vp

=
1

2
> 0,

∂p∗p
∂po

=
1

2
> 0,

∂p∗p
∂γ

= −1

2
< 0,

∂p∗p
∂l

= − t

2
< 0.

This concludes the proof.

Proof of Corollary 1. To show Corollary 1, recall πp = pp × x̄. Substituting x̄ and p∗p,

πp =
[vp + po − γ + t(1− l)]2

4(t(2− l)− γ)

∂πp

∂γ
=

vp + po + t(1− l)− γ

4(t(2− l)− γ)2
(vp + po + γ − t(3− l))

∂πp

∂l
= t

vp + po + t(1− l)− γ

4(t(2− l)− γ)2
(vp + po + γ − t(3− l)) = t

∂πp

∂γ

First notice from the restrictions imply t(2 − l) − γ > 0 and vp + po + t(1 − l) − γ > 0.

This means that the sign of ∂πp

∂γ
depends on the sign of vp + po + γ − t(3 − l). From

equation (5), vp + po + γ − t(3− l) < 0. Therefore ∂πp

∂γ
< 0, by extension ∂πp

∂l
< 0.

This concludes the proof.

Proof of Proposition 1. I solve the game by backward induction. Notice that in the

Proof of Lemma 1, I have solved the last two stages of the game. To proof Proposition 1,

I look at the first stage of the game and propose a candidate equilibrium, ruling out all

other possible equilibrium. I then show that such an equilibrium satisfies the restrictions,

26



Free and Open-Source Software Robin Ng

and maximises Founder’s utility.

Recall that πo = (γ− tl)(1− x̄). Considering equation (1), and remembering that po = 0,

πo =
(γ − tl)(t(3− l)− vp − γ)

2(t(2− l)− γ)

Taking the first and second order conditions,

∂πo

∂γ
=

t(t(6− 6l + l2)− 2vp(1− l)) + γ2 − 2γt(2− l)

2(t(2− l)− γ)2

evaluated at γ = 0,

=
t(6− 6l + l2)− 2vp(1− l)

2t(2− l)2
, > 0 at t(3 +

l2

2(1− l)
) > vp

∂2πo

∂γ2
= −2t(1− l)(vp − t)

(t(2− l)− γ)3
, < 0 at t(2− l)− γ > 0.

Notice that γ ∈ [0, 1] implies the FOSS is only active if 3t+ tl2

2(1−l)
> vp.

Solving for γ∗

γ∗ = t(2− l)±
√

2t(vp − t)(1− l)

Notice that
√

2t(vp − t)(1− l) is real only if vp ≥ t, because l ∈ (0, 1). And when√
2t(vp − t)(1− l) is real, it is ≥ 0. From Restriction 2, t(2 − l) > γ, therefore I reject

t(2− l) +
√

2t(vp − t)(1− l) as a candidate for γ∗. Moreover, because γ ∈ [0, 1], γ∗ = 1

when t > 1
2−l

and vp ≤ 1−2t(2−l)+t2(6−6l+l2)
2t(1−l)

= 3t + tl2

2(1−l)
+ 1

2t(1−l)
− 2−l

1−l
. In all other

cases, γ∗ = t(2 − l) −
√

2t(vp − t)(1− l). Therefore, I propose γ∗ = min{t(2 − l) −√
2t(vp − t)(1− l), 1} as a candidate solution.

I show when this solution satisfies Restriction 1, Consider that the Founder and the

indifferent user must have weakly positive utility. Founder’s utility is given by πo, and

this is weakly positive whenever γ ≥ tl. To see that γ∗ ≥ tl,

t(2− l)−
√

2t(vp − t)(1− l) ≥ tl

2t(1− l) ≥ (vp − t)

3t− vp
2t

≥ l

and 1 ≥ tl ⇐⇒ l ≤ 1
t
when γ∗ = 1.

The indifferent user’s utility is (γ−t(1−l))(t(3−l)−vp−γ)

2(t(2−l)−γ)
. Because Restriction 2 imply t(2 −

l)− γ > 0 and t(3− l)− vp− γ > 0, it remains that the indifferent user’s utility is weakly

27



Free and Open-Source Software Robin Ng

positive if γ ≥ t(1− l). To see that γ∗ ≥ t(1− l),

t(2− l)−
√

2t(vp − t)(1− l) ≥ t(1− l)

t ≥ 2(vp − t)(1− l)

l ≥ 2vp − 3t

2(vp − t)

and 1 ≥ t(1− l) ⇐⇒ l ≥ 1− 1
t
when γ∗ = 1.

Combining 3t−vp
2t

≥ l with l ≥ 2vp−3t

2(vp−t)
,

3t− vp
2t

≥ 2vp − 3t

2(vp − t)

vp(2t− vp) ≥ 0

requires 2t ≥ vp.

Together, this means that when γ∗ = t(2− l)−
√

2t(vp − t)(1− l), l ∈ [ 2vp−3t

2(vp−t)
, 3t−vp

2t
] such

that 2t ≥ vp. And 1− 1
t
≤ l ≤ 1

t
, which is true when t ∈ [1, 2].

Next, I show when this solution satisfies Restriction 2. It is immediate that the interior

candidate solution always satisfies equation (3). To see it satisfies equation (4),

vp + t(1− l)− t(2− l) +
√

2t(vp − t)(1− l) > 0

vp − t+
√

2t(vp − t)(1− l) > 0

This is always true.

To see it satisfies (5),

t(3− l)− vp − t(2− l) +
√

2t(vp − t)(1− l) > 0

t− vp +
√

2t(vp − t)(1− l) > 0

2t(1− l) > vp − t

t(3− 2l) > vp

And the corner solution of γ∗ = 1 satisfies these equations when t(2−l) > 1, vp+t(1−l) >

1, and t(3− l)− vp > 1.

I now show that the candidate solution is utility maxinimising.

At γ = 0, ∂πo

∂γ
is t(6−6l+l2)−2vp(1−l)

2t(2−l)2
. This is positive whenever t(3+ l2

2(1−l)
) > vp. Recall from

equation (5) that t +
√

2t(vp − t)(1− l) > vp. I now show directly that t(3 + l2

2(1−l)
) ≥

28



Free and Open-Source Software Robin Ng

t+
√
2t(vp − t)(1− l):

t(3 +
l2

2(1− l)
) ≥ t+

√
2t(vp − t)(1− l)

t(2 +
l2

2(1− l)
) ≥

√
2t(vp − t)(1− l)

Recall t(3−2l) > vp ⇐⇒ 2t(1−l) > vp−t. This means that 2t(1−l) >
√

2t(vp − t)(1− l)

and showing t(2 + l2

2(1−l)
) ≥ 2t(1− l) implies that t(2 + l2

2(1−l)
) >

√
2t(vp − t)(1− l).

t(2 +
l2

2(1− l)
) ≥ 2t(1− l)

4(1− l) + l2

2(1− l)
≥ 2(1− l)

4 ≥ 3l

Since l ∈ (0, 1), this is always true, and ∂πo

∂γ
> 0 at γ = 0.

It is immediate that ∂2πo

∂γ2 < 0 for the range of possible solutions. This is because it is

negative when vp > t. And equation (3) requires this.

Therefore, the candidate solution maximises Founder’s utility.

I now show the Founder does not always play γ = 1 when it is active. For the Founder to

play γ∗ = 1, it must be that 3t+ tl2

2(1−l)
+ 1

2t(1−l)
− 2−l

1−l
≥ 3t+ tl2

2(1−l)
, and t > 1

2−l
. Suppose

to a contradiction that the Founder always plays γ∗ = 1.

The first criteria reduces to

3t+
tl2

2(1− l)
+

1

2t(1− l)
− 2− l

1− l
≥ 3t+

tl2

2(1− l)

1− 2t(2− l)

t(1− l)
≥ 0

1

2(2− l)
≥ t

and the second implies

t >
1

2− l
1

2(2− l)
>

1

2− l
1

2
> 1.

A contradiction. This means that there exists a range of vp and t for which Founders will

29



Free and Open-Source Software Robin Ng

play the interior solution t(2− l)−
√

2t(vp − t)(1− l).

Therefore, I conclude that there exists a unique equilibrium where γ∗ = min{t(2 − l) −√
2t(vp − t)(1− l), 1} maximises Founders’ utility subject to Restrictions 1 and 2, which

require l ∈ [ 2vp−3t

2(vp−t)
, 3t−vp

2t
]. In particular, γ∗ = 1 if vp ≤ 3t + tl2

2(1−l)
+ 1

2t(1−l)
− 2−l

1−l
and

t > 1
2−l

, and l ∈ [1− 1
t
, 1
t
].

To see that ∂γ∗

∂l
≤ 0 and ∂γ∗

∂vp
≤ 0, at γ∗ = t(2− l)−

√
2t(vp − t)(1− l),

∂γ∗

∂l
=

t(vp − t−
√

2t(vp − t)(1− l))√
2t(vp − t)(1− l)

∂γ∗

∂vp
= − t(1− l)√

2t(vp − t)(1− l)

From equation (5), t− vp +
√

2t(vp − t)(1− l) > 0, hence ∂γ∗

∂l
< 0. And l ∈ (0, 1) implies

∂γ∗

∂vp
< 0.

When γ∗ = 1, changes to l or vp does not affect γ∗. Therefore ∂γ∗

∂l
= 0 and ∂γ∗

∂vp
= 0.

This concludes the proof.

Before embarking on the surplus analysis, I provide the expressions for consumer sur-

plus, CSi where i ∈ {o, p, b} represent the FOSS, the proprietary software and the total

consumer surplus respectively.

CSo =

∫ 1

x̄

γ(1− x̄)− t|(1− l(1− x̄)− x| − podx

=
(1− x̄)2(2γ + 2tl(1− l)− t)

2
− po(1− x̄) (6)

CSp =
x̄(2vp − tx̄− 2pp)

2
(7)

CSb = CSo + CSp (8)

Proof of Corollary 3. Evaluating CSo and CSp in the Founders equilibrium, recall that

po = 0

x̄ =
vp − γ∗ + t(1− l)

2(t(2− l)− γ∗)

γ∗ = t(2− l)−
√

2t(vp − t)(1− l)

p∗p =
vp + po − γ∗ + t(1− l)

2
.

Therefore, from equations (6) and (7), ∂CSo

∂l
< 0 and ∂CSp

∂l
> 0 respectively.

30



Free and Open-Source Software Robin Ng

This concludes the proof.

Proof of Proposition 2. I solve the game by backward induction, and the last two stages

are identical to that of Proposition 1. Hence, I rely on those results to proof the first

stage of the game.

To show the first stage, I first propose a candidate equilibrium, ruling out all other

possible equilibria. I then show that the candidate equilibrium satisfies the Restrictions,

and maximises Altruists’ utility.

Recall that πA
o =

∫ 1

x̄
γ(1 − x̄) − t|1 − l(1 − x̄) − x|dx. Accounting for equation (1),

πA
o = (2γ−t(1−2l+2l2))(vp+γ−t(3−l))2

8(t(2−l)−γ)2
.

Taking the first order condition,

∂πA
o

∂γ
=

(vp + γ − t(3− l))(γ(vp + t(3− 2l)− γ) + t(vp(1 + l − 2l2)− t(5− 3l − l2)))

4(t(2− l)− γ)3

∂2πA
o

∂γ2
=

(vp − t)(4tγ(1− l2)− t2(17− 4l − 14l2 + 4l3) + 2γvp + tvp(5 + 2l − 6l2))

4(t(2− l)− γ)4

First, I find the candidate γA. Solving ∂πA
o

∂γ
= 0,

γA =


t(3− l)− vp
t(3−2l)+vp−

√
(vp−t)(11t−8tl2+vp)

2

t(3−2l)+vp+
√

(vp−t)(11t−8tl2+vp)

2

I eliminate the first candidate because it violates equation (5). I eliminate the third

candidate because it leads to a contradiction, consider vp + t(1− l)− γ > 0 then,

vp + t(1− l)−
t(3− 2l) + vp +

√
(vp − t)(11t− 8tl2 + vp
2

> 0

vp − t−
√

(vp − t)(11t− 8tl2 + vp)

2
> 0

(vp − t)2 > (vp − t)(11t− 8tl2 + vp)

8tl2 > 12t

2l2 > 3

This is not possible because l ∈ (0, 1). This leaves
t(3−2l)+vp−

√
(vp−t)(11t−8tl2+vp)

2
as the

only candidate. Since (11t− 8tl2 + vp) > 0, a real solution only exists if vp > t.

I now show that at the candidate γA =
t(3−2l)+vp−

√
(vp−t)(11t−8tl2+vp)

2
that ∂πA

o

∂γ
< 0. Notice

that ∂πA
o

∂γ
> 0 only if vp < t5−2l2

2
and γ > t(t(17−4l−14l2+4l3)−vp(5+2l−6l2))

2(vp+2(1−l2)t)
, and ∂πA

o

∂γ
< 0

31



Free and Open-Source Software Robin Ng

whenever vp > t5−2l2

2
or γ < t(t(17−4l−14l2+4l3)−vp(5+2l−6l2))

2(vp+2(1−l2)t)
.

I now show that the candidate γA < t(t(17−4l−14l2+4l3)−vp(5+2l−6l2))

2(vp+2(1−l2)t)
when vp < t5−2l2

2
:

(vp − t)(11t− 8tl2 + vp)

vp + 2t(1− l2)
<

√
(vp − t)(11t− 8tl2 + vp)

(vp − t)(11t− 8tl2 + vp)

(vp + 2t(1− l2))2
< 1

(vp − t)(11t− 8tl2 + vp) < (vp + 2t(1− l2))2

t(3− 2l2)(2vp + t(−5 + 2l2)) < 0 notice that 3− 2l2 > 0

2vp − t(5− 2l2) < 0

Therefore, whenever vp < t5−2l2

2
, γA < t(t(17−4l−14l2+4l3)−vp(5+2l−6l2))

2(vp+2(1−l2)t)
. And I conclude that

there is no scenario where ∂2πA
o

∂γ2 > 0 subject to my restrictions. The candidate equilibrium

maximises Altruists’ utility.

Notice that there exists some range where γA = 1. This upper bound is reached when
t(3−2l)+vp−

√
(vp−t)(11t−8tl2+vp)

2
≥ 1 ⇐⇒ vp ≤ 1+t2(5−3l−l2)−t(3−2l)

1+t(1+l−2l2)
and t > 1

2−l
.

I conclude that Altruists always selects a positive level of coordination, γA > 0. And

γA = min{ t(3−2l)+vp−
√

(vp−t)(11t−8tl2+vp)

2
, 1} and Altruists are active when vp < t5−2l2

2
.

To see that ∂γA

∂vp
≤ 0, at

t(3−2l)+vp−
√

(vp−t)(11t−8tl2+vp)

2
,

∂γA

∂vp
=

1

2
− vp + t(5− 4l2)

2
√
(vp − t)(11t− 8tl2 + vp)

1

2
− vp + t(5− 4l2)

2
√

(vp − t)(11t− 8tl2 + vp)
< 0

0 < t2(3− 2l2)2

this is always true because t > 0 and l ∈ (0, 1).

And when γA = 1, changes to vp does not affect γA. Therefore, ∂γA

∂vp
≤ 0.

This concludes the proof.

32



Free and Open-Source Software Robin Ng

Proof of Corollary 4. Evaluating CSo and CSp in the Altruists equilibrium, recall that

po = 0

x̄ =
vp − γA + t(1− l)

2(t(2− l)− γ∗)

γA =
t(3− 2l) + vp −

√
(vp − t)(11t− 8tl2 + vp)

2

p∗p =
vp + po − γA + t(1− l)

2

Therefore, from equations (6) and (7), ∂CSo

∂l
≤ 0 and ∂CSp

∂l
> 0 respectively.

This concludes the proof.

Proof of Corollary 5. To show Corollary 5, I compare the total surplus in the market at

γA and γ∗.

The total surplus in the market is given as

TS = CSb + pp · x̄

=
(1− x̄)2(2γ − t(1− 2l + 2l2)) + x̄(2vp − tx̄)

2

Recall t(2− l)− γ > 0, v + t(1− l)− γ > 0, t(3− l)− v − γ > 0. Therefore, evaluating

TS at γ∗ and γA shows TS(γ∗) > TS(γA).

This concludes the proof.

To show Proposition 3, I first show Lemma 2 which describes the interaction between

Managers and firm’s pricing strategies.

Lemma 2. The pricing strategy of profit-driven Managers is pMo = t(3−l)−γ−vp
3

and pro-

prietary firm is pMp = vp−2γ+t(3−2l)

3
.

Proof of Lemma 2. To show Lemma 2, recall that both Managers and the proprietary

firm set prices simultaneously, and firm’s pricing strategy is given in Lemma 1. I solve

for Managers’ pricing strategy, then show the equilibrium pricing strategy.

Managers’ profit function is given by πM
o = po · (1− x̄), where x̄ is given by equation (1),

πM
o = po

t+ pp − po − vp
t(2− l)− γ

33



Free and Open-Source Software Robin Ng

and profits are concave in price. Therefore,

pMo =
pp + t− vp

2

accounting for pp =
vp+po−γ+t(1−l)

2
,

pMo =
t(3− l)− γ − vp

3

pMp =
vp − 2γ + t(3− 2l)

3

This concludes the proof.

Further, accounting for the pricing strategies, Restriction 2 implies that

t(2− l)− γ > 0 (9)

vp + t(3− 2l)− 2γ > 0 (10)

t(3− l)− vp − γ > 0 (11)

Using these pricing strategies, I now show Proposition 3.

Proof of Proposition 3. I solve the game by backward induction, where the last two

stages are given by Lemma 1 and 2. To solve the first stage, I first propose a candidate

equilibrium which maximises Managers’ profits. I then show how such an equilibrium

satisfies the model restrictions.

Accounting for the pricing strategies, the indifferent user is x̄ = vp+t(3−2l)−2γ

3(t(2−l)−γ)
and Man-

agers’ profit is now

πM
o =

(t(3− l)− vp − γ)2

9(t(2− l)− γ

∂πM
o

∂γ
=

(t(3− l − vp − γ)(γ − vp − t(1− l))

9(t(2− l)− γ)2

∂2πM
o

∂γ2
=

2(vp − t)2

9(t(2− l)− γ)3
, > 0

First, observe that within the restrictions of the model, equations (9) and (11) imply that

it is always profitable for Managers to coordinate the FOSS.

Second, observe that the second order condition implies that the FOSS profit is not

concave in the level of coordination. Therefore, whenever ∂πM
o

∂γ
> 0, Managers prefer

the highest level of coordination. Since t(3 − l) − γ − vp > 0 and t(2 − l) − γ > 0,
∂πM

o

∂γ
> 0 ⇐⇒ γ − vp − t(1− l) > 0 and 0 with equality.

34



Free and Open-Source Software Robin Ng

Suppose first that vp < t. I show that ∂πM
o

∂γ
> 0. From γ − vp − t(1− l) > 0,

γ − vp − t(1− l) > 0 adding t(2− l)− γ > 0,

t(2− l)− γ + γ − vp − t(1− l) > 0

t > vp

Therefore, whenever vp < t, ∂πM
o

∂γ
> 0 and Managers prefer the highest level of coordina-

tion, γM = 1.

Suppose next that vp ≥ t. When this is true, I show that ∂πM
o

∂γ
< 0. Suppose to a

contradiction that γ − vp − t(1− l) > 0.

γ − vp − t(1− l) > 0

t− vp > t(2− l)− γ

the left hand side is weakly negative, and the right hand side is positive. Hence, a

contradiction. This implies that ∂πM
o

∂γ
< 0, and Managers are still active, but prefer the

lowest level of coordination.

I now consider the restrictions of the model. Recall that for Restriction 1 the indiffer-

ent user and the extreme user located at 1 must have weakly positive utility, and for

Restriction 2 the equations (9), (10) and (11) hold.

The indifferent user’s utility is given by

uo(x̄) = (1− x̄)(γ − t(1− l))− po =
(t(3− l)− vp − γ)(2γ − t(3− 2l))

3(t(2− l)− γ)
,

and the for the extreme user uo(1) =
2(t(3−l)−vp−γ)(γ−t)

3(t(2−l)−γ))
. For the indifferent user to receive

weakly positive utility, γ ≥ t(3−2l)
2

, and for the extreme user, γ ≥ t.

Because γ ∈ [0, 1], Restriction 1 implies that 1 ≥ t(3−2l)
2

or l ≥ 3t−2
2t

is a sufficient condition

for Managers to be active and the market to be covered.

I now show the restrictions are satisfied by the candidate equilibrium.

Suppose first that vp < t, and the candidate equilibrium is γM = 1. The following

35



Free and Open-Source Software Robin Ng

equations need to be satisfied.

1 ≥ t

1 ≥ t(3− 2l)

2

t(2− l) > 1

vp + t(3− 2l) > 2

t(3− l)− vp > 1

Observe that when vp < t then whenever t(2− l) > 1 is satisfied, both of vp+t(3−2l) > 2

and t(3− l)− vp > 1 are satisfied. Notice that 1 ≥ t is consistent whenever

t(2− l) > 1 ≥ t

t(2− l) > t

t(1− l) > 0

which is always true because t > 0 and l ∈ (0, 1).

Finally, 1 ≥ t(3−2l)
2

⇐⇒ 2 ≥ t(3− 2l). And this is consistent whenever

vp + t(3− 2l) > 2 ≥ t(3− 2l)

vp + t(3− 2l) > t(3− 2l)

vp > 0

And this is implicitly true, or firms are inactive. See Etzion and Pang (2014) for details.

Therefore, whenever Restriction 1 and 2 are satisfied and vp < t, Managers choose γM = 1.

Suppose next that vp ≥ t, and the candidate equilibrium is the smallest level of γ that

satisfies the following equations.

γ ≥ t

γ ≥ t(3− 2l)

2

t(2− l) > γ

vp + t(3− 2l) > 2γ

t(3− l)− vp > γ

Notice first that γ ≥ t and γ ≥ t(3−2l)
2

imply that for the candidate equilibrium to satisfy

Restriction 1, γM = max{t, t(1.5−l)}. Observe that γM = t if l ≥ 0.5 and γM = t(1.5−l)

if l < 0.5.

36



Free and Open-Source Software Robin Ng

Using this, I show that the candidate equilibrium satisfies Restriction 2.

Suppose first that l ≥ 0.5 then (9), (10) and (11) become

t(2− l) > t

vp + t(3− 2l) > 2t

t(3− l)− vp > t

which are all satisfied because

t(1− l) > 0

vp + t(1− l) > 0

t(2− l)− vp > 0

are always true because t > 0 and l ∈ [0.5, 1).

Suppose next that l < 0.5 then (9), (10) and (11) become

t(2− l) > t(1.5− l)

vp + t(3− 2l) > t(3− 2l)

t(3− l)− vp > t(1.5− l)

which are all satisfied because

0.5t > 0

vp > 0

1.5t− vp > 0

which are always true because t > 0.

Therefore, following Restrictions 1 and 2, l ≥ 3t−2
2t

is a sufficient condition for Managers

to be active. And when vp ≥ t, γM = max{t, t(1.5− l)}, when vp < t, γM = 1.

This concludes the proof.

Proof of Corollary 6. I first show that total consumer surplus (CSb) decreases in l, then

show how the profits of both proprietary firm and profit-driven Managers decreases in l.

To see this, I evaluate each term in equilibrium, taking the first derivative with respect

to l.

37



Free and Open-Source Software Robin Ng

Recall that

pMo =
t(3− l)− γM − vp

3

pMp =
vp − 2γM + t(3− 2l)

3

x̄ =
vp + t(3− 2l)− 2γM

3(t(2− l)− γM)

γM =

1 if vp < t

max{t, t(1.5− l)} if vp ≥ t

I show that the total consumer surplus in unambiguously decreasing in the permissiveness

of the FOSS license.

CSb = CSo + CSp

∂CSb

∂l


< 0 when γM = 1

=
2(t2(−5+9l−6l2+l3)+tvp(3−2l+l2)−v2p)

9t(1−l)2
< 0 when γM = t and l ∈ [0.5, 1)

= −2l(3t−2vp)2

9t
< 0 when γM = t(1.5− l)

I now show that proprietary firm profit decreases in the permissiveness of the FOSS

license.

πM
p =

(vp + t(3− 2l)− 2γ)2

9(t(2− l)− γ)

∂πM
p

∂l
=


t(t(3−2l)−vp−2)(2+vp−t(5−2l)))

9(t(2−l)−1)2
< 0 if γM = 1

− (t(1−2l)+vp)(t(3−2l)−vp)

9t(1−l)2
< 0 if γM = t

0 if γM = t(1.5− l)

Finally I show how Managers profits change in the permissiveness of the FOSS license,

and that this depends on the their choice of γ.

πM
o =

(t(3− l)− vp − γ)2

9(t(2− l)− γ)

∂πM
o

∂l
=


(t(3−l)−vp−1)(1−vp−t(1−l))

9(t(2−l)−1)2
> 0 if γM = 1

(tl−vp)(t(2−l)−vp)

9t(1−l)2
< 0 if γM = t

0 if γM = t(1.5− l)

This concludes the proof.

38



Free and Open-Source Software Robin Ng

Appendix B Proofs (Extensions)

Proof of Proposition 4. I use backward induction to solve for the equilibrium. This

is done in the following steps: (1) determine the marginal user indifferent between con-

sumption of the proprietary software and the FOSS; (2) determine the marginal developer

indifferent between other leisure and the development of the FOSS; (3) solve for the price

strategy of the firm; (4) solve for the optimal level of coordination for developers of the

FOSS (γD).

In deciding which software to use, users compare between the following utilities, up =

vp − pp − tx and uo = γ(1− ō)− t|(1− l(1− ō)− x)|. The demand here arises from the

uniform distribution. The indifferent user being x̄, and ō the indifferent developer.

vp − pp − tx̄ = (1− ō)(γ + tl)− t(1− x̄)

x̄ =
vp − pp − (1− ō)(γ + tl) + t

2t

From Restriction 1, x̄ gives the demand for the proprietary software, and (1 − x̄) the

demand of the FOSS. I turn now to the decision of the developers.

Developers decide between contributing to the FOSS and receiving a utility of wo =

so − k|Lo − o| = β(1− x̄)− k|(1− l(1− ō)− o)|. Thus the indifferent developer is

β(1− x̄)− k(1− l(1− ō)− ō) = 0

ō =
β(x̄− 1) + k(1− l)

k(1− l)

= 1− β(1− x̄)

k(1− l)

This means that

x̄ =
k(1− l)(v + t− p)− β(γ + tl)

2tk(1− l)− β(γ + tl)

ō =
2tk(1− l) + β(v − p− t(1− l)− γ)

2tk(1− l)− β(γ + tl)

We will need k > β(γ+tl)
2t(1−l)

for concavity of firm’s profit function.

39



Free and Open-Source Software Robin Ng

Now we turn to the firm’s decision.

πp = ppx̄

pp =
1

2
(vp + t− β(γ + tl)

k(1− l)
)

x̄ =
k(1− l)(v + t)− β(γ + tl)

2(2tk(1− l)− β(γ + tl))

ō =
4tk2(1− l)2 + β2(γ + tl) + kβ(1− l)(vp + 2tl − 3t− 2γ)

2k(1− l)(2tk(1− l)− β(γ + tl))

πp =
((v + t)k(1− l)− β(γ + tl))2

4k(1− l)(2tk(1− l)− β(γ + tl))

Finally, we turn our attention to the coordinator of the FOSS. Recall that Founders are

selfish, and is only motivated by maximising its individual utility.

πo = β(1− x̄)− kl(1− ō)

=
β(β(2l − 1)(γ + tl) + k(1− l)(t(3− 6l + 4l2) + vp(2l − 1)))

2(1− l)(2tk(1− l)− β(γ + lt))

∂πo

∂γ
=

β2k(4tl2 + (2l − 1)(vp − t))

2(2tk(1− l)− β(γ + tl))2)

∂2πo

∂γ2
=

β3k(4tl2 + (2l − 1)(vp − t))

(2tk(1− l)− β(γ + tl))3

Observe that both ∂πo

∂γ
and ∂2πo

∂γ2 > 0 ⇐⇒ both 2l − 1 > 0 and vp − t > 0 simultane-

ously. Hence, the FOSs is only active if there is a sufficiently permissive license when

the proprietary software has a high quality, and a sufficiently restrictive license when the

proprietary software has a low quality. In either case, Founders select γD = 1 preferring

that contributions by each developer is unique.

Notice that β does not influence the outcome of this decision.

This concludes the proof.

Proof of Proposition 5. To show this, I solve the game by backward induction. Since the

last two stages of the game is identical to the main model, the proof for the indifferent

user and proprietary firm’s action can be found in Lemma 1. Recall that the objective

40



Free and Open-Source Software Robin Ng

function of Founders is

πo = γ(1− x̄)− t(l(1− x̄))

= (γ − tl)(
t(3− l)− γ − vp
2(t(2− l)− γ)

)

∂πo

∂l
=

−t(γ2 + t((6− 4l + l2)t− 2v) + 2γ((−3 + l)t+ vp))

2(t(2− l)− γ)2

∂2πo

∂l2
=

2t2(vp − t)(t− γ)

(t(2− l)− γ)3
.

If γ ≥ t, then ∂πo

∂l
≤ 0.

If γ < t, then ∂2πo

∂l2
> 0. And ∂πo

∂l
> 0 ⇐⇒ vp >

t2(6−4l+l2)+γ2−2tγ(3−l)
2(t−γ)

.

This concludes the proof.

Proof of Corollary 7. I first show that Founders and Altruists never form monopolies. I

then show the conditions which allow profit-driven Managers to form a monopoly, and a

proprietary firm to form a monopoly.

To see that Founders and Altruists never form monopolies, observe that x̄ = vp−γ+t(1−l)

2(t(2−l)−γ)
.

For x̄ ≤ 0, vp + t(1− l)− γ ≤ 0. This means γ ≥ vp + t(1− l) is necessary for the FOSS

to form a monopolist. At the interior solutions for both Founders and Altruists, this is

not true.

To see when Managers form a monopoly, observe that x̄ = vp+t(1−2l)

t(4−3l)−γ
. For x̄ ≤ 0 ⇐⇒

vp ≤ t(2l − 1).

To see when a proprietary firm is a monopolist, observe that x̄ ≥ 1 ⇐⇒ vp ≥ t(3−l)−γ.

By definition of monopoly, γ = 0. Therefore a firm forms monopoly whenever vp ≥ t(3−l).

This concludes the proof.

Proof of Proposition 6. This game is identical to the main model, with the following

change: users have heterogeneous skill level, and those located at 1 have a higher skill

level than those located at 0. I solve this game by backward induction to find γS, the

optimal unique contributions for Founders.

First, I look at the decision made by the marginal user.

vp − pp − tx̄ =
(1− x̄)(α(1 + x̄)(γ + tl)− 2t)

2

41



Free and Open-Source Software Robin Ng

From this, we can find partial derivatives for x̄ with respect to pp and γ.

∂x̄

∂pp
=

1

x̄α(γ + tl)− 2t

∂x̄

∂γ
=

α(1− x̄2)

2(x̄α(γ + tl)− 2t)

Solving explicitly for x̄,

x̄ =
2t±

√
4t2 + α2(γ + tl)2 − 2α(γ + tl)(v + t− p)

α(γ + tl)

Moving to the next stage, we look at the decision made by the firm. Notice that for

any real interior solution, this means that ∂x̄
∂p

< 0. This implies that 2t > x̄α(γ + tl).

And additionally that we reject the positive of x̄, and x̄ =
2t−

√
4t2+α2(γ+tl)2−2α(γ+tl)(v+t−p)

α(γ+tl)
.

This means for positive demand, p < v + t − α(γ+tl)
2

and for a real solution to x̄, p ≥
v + t− 4t2+α2(γ+tl)2

4α(γ+tl)
. Hence, for a duopoly it must be that 2t > α(γ + tl).

Solving for the optimal price,

πp = px̄

∂πp

∂p
= x̄+

∂x̄

∂p
p

For a solution, ∂πp

∂p
= 0 and this implies that pp = − x̄

∂x̄
∂pp

= x̄(2t− x̄α(γ + tl)).

∂2πp

∂p2p
= 2

∂x̄

∂p
+ p

∂2x̄

∂p2

=
3x̄α(γ + tl)− 4t

(2t− x̄α(γ + tl))2
< 0

For an interior solution, 3x̄α(γ + tl)− 4t < 0 or x̄ < 4t
3α(γ+tl)

or γ < t( 4
3x̄α

− l).

These two conditions together imply that 2t > α(γ + tl) or that α < 2t
γ+tl

.

Together, the three conditions α < 4t
3x̄(γ+tl)

, α < 2t
x̄(γ+tl)

and α < 2t
γ+tl

suggest that an

interior solution is only possible if α is sufficiently small, bound above by 2t
γ+tl

if x̄ ≤ 2
3

and 4t
3x̄(γ+tl)

if x̄ > 2
3
. In all other cases, there will be zero demand for the proprietary

software. That is, if users are exceptionally skilled, they simply create a unique product

on their own, driving out the proprietary firm. Given this, I now turn to the Founders’

choice. Observe that α < 2t
x̄(γ+tl)

is the least restrictive condition. Also notice that

rewriting x̄ < 4t
3α(γ+tl)

and x̄ < 2t
α(γ+tl)

suggests that x̄ decreases in α.

42



Free and Open-Source Software Robin Ng

Moving to the first stage, the decision by Founders is

πo =
α(γ − tl)(1− x̄2)

2

And subject to γ ≤ 1, letting λ be the shadow price,

∂πo

∂γ
=

α(1− x̄2 − 2(γ − tl)x̄∂x̄
∂γ
)

2
− λ

=
αt(1− x̄αl)(1− x̄2)

2t− x̄α(γ + tl)
− λ

λ ≥ 0, λ(1− γ) = 0, 1− γ ≥ 0.

Notice that for αt(1−x̄αl)(1−x̄2)
2t−x̄α(γ+tl)

− λ = 0, either x̄ = 1
αl

and λ = 0 or λ = αt(1−x̄αl)(1−x̄2)
2t−x̄α(γ+tl)

. In

the first case, λ = 0 implies that this solution can be true for any γ. In the second case,

λ > 0 implies that γ = 1.

Observe that the coordinator is only active if γ > tl. Suppose that γ ̸= 1. Then
∂πo

∂γ
≥ 0 ⇐⇒ (1 − x̄αl) ≥ 0, and 0 only with equality This means should there be an

interior solution for the FOSS where x̄ = 1
αl
.

However, I show that x̄ = 1
αl

leads to a contradiction between an active FOSS, γ > tl,

and an active firm, 2t − x̄α(γ + tl) = 2t − α(γ+tl)
αl

> 0 ⇐⇒ tl > γ. Hence, a duopoly

cannot exist if x̄ = 1
αl
.

Therefore, the optimal solution for Founders is γS = 1.

I conclude that skilled self-interested Founders choose to develop a FOSS if 1 > tl, and

they prefer that contributions of each developer is unique, γS = 1.

This concludes the proof.

43


	Introduction
	Related Literature
	Model
	Coordinating Free and Open-Source Software
	Users
	Proprietary Firm
	Founder
	Surplus Analysis

	Altruists
	Surplus Analysis

	Profit-Driven Managers
	Surplus Analysis

	Extensions
	Non-User Developers
	Founder's License Choice
	Monopolistic Market
	Skilled Users

	Conclusion
	References
	Appendices
	Proofs
	Proofs (Extensions)

