Competition Through Recommendations

Robin Ng

Mannheim, MaCCI

Berlin Micro Theory Seminar

Roadmap

Introduction

Setup

Simple recommendations

Value recommendations

Informative recommendations

Competition

Extensions

Conclusion

Motivation

▶ Historical problem: How to *foster* trust on the internet?

Motivation

▶ Historical problem: How to *foster* trust on the internet?

- ▶ Historical problem: How to *foster* trust on the internet?
 - ► Simple (lowest price first) lists ⇒ reputation and recommender systems.
 - ▶ Improved profits and higher consumer trust.
 - ightharpoonup Reputation \iff feedback \iff value

- Historical problem: How to foster trust on the internet?
 - ▶ Simple (lowest price first) lists ⇒ reputation and recommender systems.
 - Improved profits and higher consumer trust.
 - ightharpoonup Reputation \iff feedback \iff value
- ► Fostering: Recommender systems more informative of value.

- Historical problem: How to foster trust on the internet?
 - ▶ Simple (lowest price first) lists ⇒ reputation and recommender systems.
 - Improved profits and higher consumer trust.
 - ▶ Reputation ⇔ feedback ⇔ value
- ► Fostering: Recommender systems more informative of value.
- ► Today: A dreading sense of *enshittification*.
 - Recommender systems showing poorer results.

- Historical problem: How to foster trust on the internet?
 - ▶ Simple (lowest price first) lists ⇒ reputation and recommender systems.
 - Improved profits and higher consumer trust.
 - ightharpoonup Reputation \iff feedback \iff value
- ► Fostering: Recommender systems more informative of value.
- ► Today: A dreading sense of *enshittification*.
 - ▶ Recommender systems showing poorer results.
 - Fear recommender systems form part of platforms' systemic risk.
 - ▶ DSA 27: transparency and modification of recommender systems parameters.

Approach

- Study the evolution of rec.sys. in a two-sided market.
- ▶ Platform decides how well recommender system informs of value.

Questions

- Do monopolist inherently create uninformative rec.sys.?
- Does competition promote informative rec.sys.?
- How do rec.sys. redistribute surplus?
- Discuss the role of regulation.

Preview of results

Mechanism

- ▶ More informative rec.sys. induces price competition creating a screening effect.
- ▶ Platform's tradeoff: volume per transaction revenue

Preview of results

Mechanism

- More informative rec.sys. induces price competition creating a screening effect.
- Platform's tradeoff: volume per transaction revenue

Implications

- ▶ Result 1: Monopolist platform prefers rec.sys. more informative than value.
- Result 2: Competition can promote more informative rec.sys.
- ▶ Result 3: Informative rec.sys. inordinately benefit highest quality firms.
- Result 4: Transparency can discourage informative rec.sys.

Roadmap

Introduction

Setup

Simple recommendations

Value recommendations

Informative recommendations

Competition

Extensions

Conclusion

Model (I)

Consumers

- Unit mass each demanding a single unit of product.
- ▶ Heterogeneous inertia of joining platform, c_i IID U[0,1].
- ▶ Utility $u_i(\alpha_i, p_i) = \alpha_i p_i$, α_i quality of firm j and p it's price.
- ▶ Mass of consumers joining platform: *n*.

Drop the j subscript.

Model (II)

Firms

- Unit mass of single product firms.
- ▶ Products are homogeneous with heterogeneous quality, α IID U[0,1].
- Only sell on platform, no direct sales.
- Fees: Ad valorem commission fee, r, to platform.
- ightharpoonup Marginal cost = 0.
- $\qquad \qquad \pi(D(\alpha, p, \mathbf{p}_{-j}), p) = (1-r)D(\alpha, p, \mathbf{p}_{-j})p.$
- ► Set of firms joining platform: *N*.

Model (III)

Platform

- Intermediates between consumers and firms.
- Provides recommendations through product listings.
- $D_h(\alpha_h, p_h, \mathbf{p}_{-h}) = n\lambda(\alpha_h, p_h, \mathbf{p}_{-h}).$

$$\lambda(lpha, p, \mathbf{p}_{-j}, \sigma) = egin{cases} rac{lpha - p - \sigma}{\int_{lpha h orall h \in N} lpha_h - p_h - \sigma \; dlpha_h} & ext{if } lpha - p - \sigma \geq 0 \ 0 & ext{otherwise,} \end{cases}$$

$$\sigma \in \mathbf{R}_{+}$$
.

Model (III)

Platform

- Intermediates between consumers and firms.
- Provides recommendations through product listings.
- $\qquad \qquad \blacksquare r \int_{\alpha_h \forall h \in N} D_h(\alpha_h, p_h, \mathbf{p}_{-h}) p_h \ d\alpha_h.$
- $D_h(\alpha_h, p_h, \mathbf{p}_{-h}) = n\lambda(\alpha_h, p_h, \mathbf{p}_{-h}).$

$$\lambda(\alpha, p, \mathbf{p}_{-j}, \sigma) = egin{cases} rac{lpha - p - \sigma}{\int_{lpha h orall h \in \mathbb{N}} lpha_h - p_h - \sigma \; dlpha_h} & ext{if } lpha - p - \sigma \geq 0 \ 0 & ext{otherwise,} \end{cases}$$

$$\sigma \in \mathbf{R}_+$$
.

Note: relative value, positive utility.

Model (IV)

Timing

- ▶ Platform announces its recommender system.
- ► Firms decide to join the platform, setting prices. (platform 'learns' firm quality)
- Consumers decide to join the platform, obtains recommendations and consume.

Find SPNE.

Roadmap

Introduction

Setup

Simple recommendations

Value recommendations

Informative recommendations

Competition

Extensions

Conclusion

Simple recommendations

Lowest-price first

$$\lambda^s(p,\mathbf{p}_{-j}) = rac{1}{\int_{lpha_horall h\in N} 1 \; dlpha_h}.$$

► Highly uninformative — Bertrand like competition.

Simple recommendations

Lowest-price first

$$\lambda^s(p,\mathbf{p}_{-j}) = rac{1}{\int_{lpha_horall h\in N} 1 \; dlpha_h}.$$

► Highly uninformative — Bertrand like competition.

Simple recommendations

Lowest-price first

$$\lambda^s(
ho, \mathbf{p}_{ ext{-}j}) = rac{1}{\int_{lpha_h orall h \in \mathcal{N}} 1 \,\, dlpha_h}.$$

Highly uninformative — Bertrand like competition.

Equilibrium

- ▶ Consumers join the platform if $E[u^s] \ge c_i$.
- Firms set $p^s = 0$.
- $CS = \frac{1}{2}$, firm and platform make zero surplus.

Roadmap

Introduction

Setup

Simple recommendations

Value recommendations

Informative recommendations

Competition

Extensions

Conclusion

Value recommendations

Fixing $\sigma = 0$:

$$\lambda^{\nu}(\alpha, p, \mathbf{p}_{-j}) = \begin{cases} \frac{\alpha - p}{\int_{\alpha_h \forall h \in N} \alpha_h - p_h \ d\alpha_h} & \text{if } \alpha - p \ge 0 \\ 0 & \text{otherwise.} \end{cases}$$

 $\triangleright \lambda^{\nu}$ highlights a ranking effect.

Value recommendations

Fixing $\sigma = 0$:

$$\lambda^{\nu}(\alpha, p, \mathbf{p}_{-j}) = \begin{cases} \frac{\alpha - p}{\int_{\alpha_h \forall h \in \mathbb{N}} \alpha_h - p_h \ d\alpha_h} & \text{if } \alpha - p \geq 0 \\ 0 & \text{otherwise.} \end{cases}$$

 $\triangleright \lambda^{\nu}$ highlights a ranking effect.

Value recommendations

Fixing $\sigma = 0$:

$$\lambda^{\nu}(\alpha, p, \mathbf{p}_{-j}) = \begin{cases} \frac{\alpha - p}{\int_{\alpha_h \forall h \in N} \alpha_h - p_h \ d\alpha_h} & \text{if } \alpha - p \ge 0 \\ 0 & \text{otherwise.} \end{cases}$$

- $\triangleright \lambda^{\nu}$ highlights a ranking effect.
 - ► Higher relative value ⇒ higher on the list.
 - ▶ Platform can generate utility using informative recommendation rule.

Equilibrium

Consumers

► Always purchase if join the platform.

Equilibrium

Consumers

- ► Always purchase if join the platform.

Firms

$$ightharpoonup p^{\mathsf{v}} = \frac{\alpha}{2}.$$

Surplus

- ▶ Platform and firm total profits: $\frac{1}{9}$, > 0.
- ► Consumer surplus: $\frac{1}{3}$, $<\frac{1}{2}$.
- ► Total surplus: $\frac{4}{9}$, $<\frac{1}{2}$.

Surplus

- ▶ Platform and firm total profits: $\frac{1}{9}$, > 0.
- ► Consumer surplus: $\frac{1}{3}$, $<\frac{1}{2}$.
- Total surplus: $\frac{4}{9}$, $<\frac{1}{2}$.

Remark

- 1. Platform has an incentive to introduce value rec.sys.
- 2. Relying solely on consumer generated data makes consumers worse-off than simple lists.

Roadmap

Introduction

Setup

Simple recommendations

Value recommendations

Informative recommendations

Competition

Extensions

Conclusion

Informative recommendations

$$\lambda(\alpha, p, \mathbf{p}_{-j}, \sigma) = egin{cases} rac{lpha - p - \sigma}{\int_{lpha_h orall h \in \mathbb{N}} lpha_h - p_h - \sigma \; dlpha_h} & ext{if } lpha - p - \sigma \geq 0 \ 0 & ext{otherwise}. \end{cases}$$

- ightharpoonup Higher σ emphasises value.
 - Exacerbates ranking effect.
 - ► Creates screening effect.

Informative recommendations

$$\lambda(\alpha, p, \mathbf{p}_{-j}, \sigma) = egin{cases} rac{lpha - p - \sigma}{\int_{lpha_h orall h \in \mathbb{N}} lpha_h - p_h - \sigma \; dlpha_h} & ext{if } lpha - p - \sigma \geq 0 \ 0 & ext{otherwise}. \end{cases}$$

- ightharpoonup Higher σ emphasises value.
 - Exacerbates ranking effect.
 - Creates screening effect.

Informative recommendations

$$\lambda(\alpha, p, \mathbf{p}_{-j}, \sigma) = \begin{cases} \frac{\alpha - p - \sigma}{\int_{\alpha_h \forall h \in N} \alpha_h - p_h - \sigma \ d\alpha_h} & \text{if } \alpha - p - \sigma \ge 0 \\ 0 & \text{otherwise.} \end{cases}$$

- \triangleright Higher σ emphasises value.
 - Exacerbates ranking effect.
 - ► Creates screening effect.
 - Some lower quality firms obtain no transactions.

Equilibrium (I)

Consumers

- Always purchase if join the platform.

Firms

- - ▶ Set low prices to attract demand, low quality firms become unprofitable.
 - ▶ Only sufficiently high quality firms are active on the platform, $\bar{\alpha} = \sigma$.

Equilibrium (II)

Platform

$$\Pi = \int_{\sigma}^{1} \lambda(lpha_h, p_h^*, \mathbf{p}_{-h}, \sigma)(lpha_h - p_h^* - \sigma) \ dlpha_h r \int_{\sigma}^{1} \lambda(lpha_h, p_h^*, \mathbf{p}_{-h}, \sigma) p_h^* \ dlpha_h$$

Balance: Transaction volume and per transaction revenue.

Equilibrium (II)

Platform

$$\Pi = \frac{1+2\sigma}{3}r\frac{1-\sigma}{3}.$$

▶ Balance: Transaction volume and per transaction revenue.

Platform

$$\Pi = \frac{1+2\sigma}{3}r\frac{1-\sigma}{3}.$$

- ▶ Balance: Transaction volume and per transaction revenue.
- ightharpoonup Raising σ :
 - Ranking effect More transactions between consumers and better firms.
 - ► Screening effect Only higher quality firms remain.
 - Price competition each firm sets lower prices.

Platform

$$\Pi = \frac{1+2\sigma}{3}r\frac{1-\sigma}{3}.$$

- Balance: Transaction volume and per transaction revenue.
- ightharpoonup Raising σ :
 - Ranking effect More transactions between consumers and better firms.
 - Screening effect Only higher quality firms remain.
 - Price competition each firm sets lower prices.

Proposition

There exists a unique SPNE where a monopolist platform sets $\sigma^m = \frac{1}{4} > 0$.

Suppose $\sigma \uparrow$:

- ▶ Redistribution of profits towards to highest quality firms.
- ▶ All other firms worse-off: lower prices, fewer (zero) transactions.
- Consumers face higher quality firms at lower prices (better-off).

Suppose $\sigma \uparrow$:

- ▶ Redistribution of profits towards to highest quality firms.
- ▶ All other firms worse-off: lower prices, fewer (zero) transactions.
- ► Consumers face higher quality firms at lower prices (better-off).

Note: protectionism, variety.

Equilibrium

- ► Total profits $\frac{1}{8}$, $> \frac{1}{9}$.
- ► Consumer surplus: $\frac{1}{2}$, 'identical' to simple recommendations.
 - ▶ (Postulation) Better if: positive prices, risk aversion.
- ► Total surplus: $\frac{5}{8}$, $> \frac{1}{2}$.

Remark

- 1. Platform has an incentive to introduce rec.sys. more informative than value.
- 2. Platform preferred rec.sys. allows consumers to be better-off and generates surplus compared to simple recommendations.

Equilibrium

- ► Total profits $\frac{1}{8}$, $> \frac{1}{9}$.
- ► Consumer surplus: $\frac{1}{2}$, 'identical' to simple recommendations.
 - ▶ (Postulation) Better if: positive prices, risk aversion.
- ► Total surplus: $\frac{5}{8}$, $> \frac{1}{2}$.

Remark

- 1. Platform has an incentive to introduce rec.sys. more informative than value.
- 2. Platform preferred rec.sys. allows consumers to be better-off and generates surplus compared to simple recommendations.

Remark

DSA Article 27: ability to modify main parameters.

Has no bite? Consumers already better off than when "left to their own devices".

Recommender systems are complex:

- Consumers may not be able to fully rationalise their effects.
- ► For example: equilibrium effects on prices.

Recommender systems are complex:

- Consumers may not be able to fully rationalise their effects.
- For example: equilibrium effects on prices.

Alternate environment:

Consumers do not rationalise equilibrium effect of σ on prices.

▶ To consumers, $p^c = \frac{\alpha}{2}$.

$$\lambda^c = egin{cases} rac{rac{lpha}{2} - \sigma}{\int_0^1 rac{lpha_h}{2} - \sigma \; dlpha_h} & ext{if } lpha - p \geq 0 \ 0 & ext{otherwise} \end{cases}.$$

Consumers wrongly imagine all firms are active.

Recommender systems are complex:

- Consumers may not be able to fully rationalise their effects.
- ► For example: equilibrium effects on prices.

Alternate environment:

Consumers do not rationalise equilibrium effect of σ on prices.

Proposition

When consumers are naive, $\sigma^N \to \frac{1}{4}$ from below.

Consumers and platform are both worse-off than no naivete.

Recommender systems are complex:

- Consumers may not be able to fully rationalise their effects.
- ► For example: equilibrium effects on prices.

Alternate environment:

Consumers do not rationalise equilibrium effect of σ on prices.

Proposition

When consumers are naive, $\sigma^N \to \frac{1}{4}$ from below.

- Consumers and platform are both worse-off than no naivete.
- ▶ DSA Article 27 on transparency: Aligned with consumers' concerns. Already in line with platform's preference.

Roadmap

Introduction

Setup

Simple recommendations

Value recommendations

Informative recommendations

Competition

Extensions

Conclusion

Competitor: simple recommendations

Setting

- Suppose there exist two platforms $k \in \{I, C\}$ incumbent and competitor, acting simultaneously.
- Consumers:
 - ▶ inertia IID drawn $c_{i,k} \sim U[0,1]$.
 - ▶ Single home only join platform which gives highest $E[u_k] c_{ik}$.
- Firms: costless to join platforms, and may choose to multi-home.

Competitor: simple recommendations

Setting

- Suppose there exist two platforms $k \in \{I, C\}$ incumbent and competitor, acting simultaneously.
- ► Consumers:
 - ▶ inertia IID drawn $c_{i,k} \sim U[0,1]$.
 - ▶ Single home only join platform which gives highest $E[u_k] c_{ik}$.
- Firms: costless to join platforms, and may choose to multi-home.

Note: Competitor has no decisions to make, incumbent announces σ .

Consumers

- Join platform with highest expected utility.
- Buy recommended product.

$$n_k = \begin{cases} E[u_k] - \frac{E[u_{-k}]^2}{2} & \text{if } E[u_k] \ge E[u_{-k}] \\ E[u_k](1 - E[u_{-k}] + \frac{E[u_k]}{2}) & \text{if } E[u_k] < E[u_{-k}]. \end{cases}$$

Consumers

- Join platform with highest expected utility.
- Buy recommended product.

$$n_k = \begin{cases} E[u_k] - \frac{E[u_{-k}]^2}{2} & \text{if } E[u_k] \ge E[u_{-k}] \\ E[u_k](1 - E[u_{-k}] + \frac{E[u_k]}{2}) & \text{if } E[u_k] < E[u_{-k}]. \end{cases}$$

Firms

Positive profit on incumbent, zero profit on competitor. Set $p^* = \frac{\alpha - \sigma}{2}$ on incumbent, p = 0 on competitor.

Consumers

- Join platform with highest expected utility.
- Buy recommended product.

$$n_k = \begin{cases} E[u_k] - \frac{E[u_{-k}]^2}{2} & \text{if } E[u_k] \ge E[u_{-k}] \\ E[u_k](1 - E[u_{-k}] + \frac{E[u_k]}{2}) & \text{if } E[u_k] < E[u_{-k}]. \end{cases}$$

Firms

- Positive profit on incumbent, zero profit on competitor. Set $p^* = \frac{\alpha \sigma}{2}$ on incumbent, p = 0 on competitor.
- Firms single-home:
 - ▶ Join competitor ⇔ cannot make profit on incumbent.
 - Multi-homing decreases incumbent demand.

Consumers

- Join platform with highest expected utility.
- Buy recommended product.

$$n_k = \begin{cases} E[u_k] - \frac{E[u_{-k}]^2}{2} & \text{if } E[u_k] \ge E[u_{-k}] \\ E[u_k](1 - E[u_{-k}] + \frac{E[u_k]}{2}) & \text{if } E[u_k] < E[u_{-k}]. \end{cases}$$

Firms

- Positive profit on incumbent, zero profit on competitor. Set $p^* = \frac{\alpha \sigma}{2}$ on incumbent, p = 0 on competitor.
- Firms single-home:
 - ▶ Join competitor ⇔ cannot make profit on incumbent.
 - Multi-homing decreases incumbent demand.

Proposition

When the competitor adopts simple recommendations, $\sigma_I = \frac{2}{9} < \sigma^m$.

Remark

- 1. Competition does not necessarily lead to more informative recommendations.
- 2. Consumer surplus increases driven by 'new' consumers accessing the competitor **not** recommendations.

Competitor: informative recommendations (I)

Both platforms use informative recommendations: (backwards)

- Consumers join platform with highest expected utility and buy.
- **>** Firms choose which platform to join and on either set $p^* = \frac{\alpha \sigma}{2}$.
- ▶ Platforms simultaneously maximise profits, selecting σ_I and σ_C .

Search for symmetric equilibrium.

(essentially a symmetric problem, here asymmetric equilibria fail to be stable.)

Competitor: informative recommendations (II)

Proposition

When both platforms adopt informative rec. sys., there exists a unique symmetric equilibrium:

- 1. $\sigma^c = 0.379 > \sigma^m$.
- 2. Firms multi-home if $\alpha \geq \sigma^c$ and are inactive otherwise.

Competitor: informative recommendations (II)

Proposition

When both platforms adopt informative rec. sys., there exists a unique symmetric equilibrium:

- 1. $\sigma^c = 0.379 > \sigma^m$.
- 2. Firms multi-home if $\alpha \geq \sigma^c$ and are inactive otherwise.

- Informative competition drives informative recommendations.
- Consumer surplus increases driven by 'new' consumers + recommendations (better firms and lower prices given quality).
- Issues with symmetric equilibrium?

Competitor: informative recommendations (II)

Proposition

When both platforms adopt informative rec. sys., there exists a unique symmetric equilibrium:

- 1. $\sigma^c = 0.379 > \sigma^m$.
- 2. Firms multi-home if $\alpha \geq \sigma^c$ and are inactive otherwise.

- Informative competition drives informative recommendations.
- Consumer surplus increases driven by 'new' consumers + recommendations (better firms and lower prices given quality).
- ► Issues with symmetric equilibrium?
 DMA: data sharing // level playing field between platforms → competition between firms on each platform.

Fostering-Enshittification

Fostering Phase

- ▶ Monopoly (eBay): from simple lists to value rec sys.
- ► Consumer awareness leads to more informative rec.sys.
- ▶ Competition: rec.sys. become more informative of value.

Fostering-Enshittification

Fostering Phase

- Monopoly (eBay): from simple lists to value rec sys.
- ► Consumer awareness leads to more informative rec.sys.
- ► Competition: rec.sys. become more informative of value.

Enshittification Phase

- ightharpoonup Rise of gatekeepers \Rightarrow less informative of value.
- More complex recommendation mechanisms ⇒ less informative of value. (less transparent)

Enshittification bad, but better than leaving consumers to fend for themselves.

Roadmap

Introduction

Setup

Simple recommendations

Value recommendations

Informative recommendations

Competition

Extensions

Conclusion

More results (I): marginal cost

In the monopoly setting, suppose instead:

Firms face a positive marginal cost *e*.

Firms:

- ▶ Optimal pricing strategy $\frac{\alpha \sigma + e}{2}$.
- ▶ Only firms with $\alpha > \sigma + e$ are active marginal costs drives screening.

More results (I): marginal cost

In the monopoly setting, suppose instead:

Firms face a positive marginal cost *e*.

Firms:

- ▶ Optimal pricing strategy $\frac{\alpha \sigma + e}{2}$.
- ▶ Only firms with $\alpha > \sigma + e$ are active marginal costs drives screening.

Platform:

- ► Firms set higher prices → platforms fee increases.
- Tradeoff between per transaction revenue and volume becomes less stark.
- ▶ Obtain volume: prefer more informative recommendations, $\sigma > \sigma^m$.

All effects serve to improve CS.

More results (II): per unit fees

In the monopoly setting, suppose instead:

- ▶ The platform sets per-unit fees, b, rather than ad-valorem fees.
- ightharpoonup Announces its fee b alongside σ .

More results (II): per unit fees

In the monopoly setting, suppose instead:

- ▶ The platform sets per-unit fees, *b*, rather than ad-valorem fees.
- ightharpoonup Announces its fee *b* alongside σ .

In equilibrium:

- ► Firms optimal pricing strategy is $\frac{\alpha \sigma + b}{2}$.
- ▶ Platform profit is increasing in σ , and they prefer $\sigma = 1 b$ such that only the highest quality firm is active.
- ▶ Optimal $b^* = \frac{1+2\sigma}{2} = \frac{3}{4}$ and $\sigma = \frac{1}{4}$.

More results (II): per unit fees

In the monopoly setting, suppose instead:

- ▶ The platform sets per-unit fees, *b*, rather than ad-valorem fees.
- ightharpoonup Announces its fee b alongside σ .

In equilibrium:

- ► Firms optimal pricing strategy is $\frac{\alpha \sigma + b}{2}$.
- ▶ Platform profit is increasing in σ , and they prefer $\sigma = 1 b$ such that only the highest quality firm is active.
- ▶ Optimal $b^* = \frac{1+2\sigma}{2} = \frac{3}{4}$ and $\sigma = \frac{1}{4}$.

Platform extracts full profits. Consumers only interact with highest quality firm and $CS = \frac{1}{4}$.

More results (III): Asymmetric competition (I)

In the competition setting, suppose instead:

- ▶ There is asymmetric consumer inertia across platforms:
 - ► The distribution of inertia to join competitor first order stochastic dominate the inertia to join incumbent. (more costly to join competitor.)
 - ▶ Crudely suppose: $c_{i,I} \sim U[0,1]$ and $c_{i,C} \sim$ triangular distribution peak 1.

More results (III): Asymmetric competition (I)

In the competition setting, suppose instead:

- ▶ There is asymmetric consumer inertia across platforms:
 - ► The distribution of inertia to join competitor first order stochastic dominate the inertia to join incumbent. (more costly to join competitor.)
 - ▶ Crudely suppose: $c_{i,I} \sim U[0,1]$ and $c_{i,C} \sim$ triangular distribution peak 1.

Proposition

There exists a unique equilibrium where $\sigma_C = 0.475 > \sigma_I = 0.319$.

Closely relates to how a new competitor (TikTok) wants to gain market share through better algorithms (against Instagram).

More results (IV): Asymmetric competition (II)

In the competition setting, suppose instead:

- ▶ Platforms announce their recommender system sequentially.
- Allow the incumbent to be more 'flexible' and move second.

More results (IV): Asymmetric competition (II)

In the competition setting, suppose instead:

- Platforms announce their recommender system sequentially.
- ▶ Allow the incumbent to be more 'flexible' and move second.

Firms: optimal price $p = \frac{\alpha - \sigma_k}{2}$.

- $ightharpoonup \alpha \geq \max\{\sigma_C, \sigma_I\}$ multi-home.
- $\sim \alpha \in [\sigma_C, \sigma_I)$ single-home.
- $ightharpoonup \alpha < min\{\sigma_C, \sigma_I\}$ inactive.

More results (IV): Asymmetric competition (II)

In the competition setting, suppose instead:

- ▶ Platforms announce their recommender system sequentially.
- ▶ Allow the incumbent to be more 'flexible' and move second.

Firms: optimal price $p = \frac{\alpha - \sigma_k}{2}$.

- $ightharpoonup \alpha \geq \max\{\sigma_C, \sigma_I\}$ multi-home.
- $\sim \alpha \in [\sigma_C, \sigma_I)$ single-home.
- $ightharpoonup \alpha < min\{\sigma_C, \sigma_I\}$ inactive.

Proposition

There exists a unique equilibrium where $\sigma_I = 0.360 > \sigma_C = 0.311$, $\Pi_I > \Pi_C$.

Even with asymmetric data, competition can stimulate informative recommendations

More results (V): Multi-homing consumers

In the competition setting, suppose instead consumers search across platforms:

- ▶ Consumers join platform giving highest $E[u_k] c_{i,k}$.
- ▶ They see a firm, if value is too low go to next platform.

Note: search is 'costly' in that inertia is positive.

More results (V): Multi-homing consumers

In the competition setting, suppose instead consumers search across platforms:

- ▶ Consumers join platform giving highest $E[u_k] c_{i,k}$.
- ▶ They see a firm, if value is too low go to next platform.

Note: search is 'costly' in that inertia is positive.

Proposition

There exists a symmetric equilibrium where $\sigma < \sigma^m$.

This is unique under uniform distribution.

Remark

When consumers search, competition lowers consumer surplus.

More results: Robustness

Monopoly

- ▶ General distributions: Relative informativeness of rec.sys. hold if
 - Distribution of high-quality firms not to heavy.
 - Distribution of consumer inertia not too low.
- Negative consumption utility
- General recommender function

Competition

- Costly firm entry onto second platform.
 - ► Top firms join both platforms; Next group join one platform at random; Last group join less informative platform.
 - The rest exit.

Roadmap

Introduction

Setup

Simple recommendations

Value recommendations

Informative recommendations

Competition

Extensions

Conclusion

Related Literature

Closest (?) theory papers:

- ▶ Platforms competition: Damiano and Hao, 2008
- Non-price strategies: Jeon and Rochet, 2010; Nocke and Strausz, 2023; Casner and Teh, Forthcoming
- ► Competition among search engines: De Corniere, 2016

Related empirical evidence:

- Recommender systems build trust: Chen and He, 2011
- ▶ Value drives reputation: Luca, 2016
- ▶ Informative systems, lower prices: Jin and Kato, 2006

Related Literature

Closest (?) theory papers:

- ▶ Platforms competition: Damiano and Hao, 2008
- Non-price strategies: Jeon and Rochet, 2010; Nocke and Strausz, 2023; Casner and Teh, Forthcoming
- ► Competition among search engines: De Corniere, 2016

Related empirical evidence:

- Recommender systems build trust: Chen and He, 2011
- ▶ Value drives reputation: Luca, 2016
- ▶ Informative systems, lower prices: Jin and Kato, 2006
- ► Competing rec.sys.? Please let me know.

Summary

- ► Capture how recommender systems evolved over time (1997 2024).
- ▶ Rise of Gatekeepers can explain enshittification.
- Consumers are not necessarily worse-off despite Gatekeepers
- DSA 27 seems redundant.
 Already in platforms interest to be transparent.
 Difficult for consumers to do better than platform.
- Regulating gatekeepers not only facilitate competition between platforms but between firms on platforms.

Summary

- ► Capture how recommender systems evolved over time (1997 2024).
- Rise of Gatekeepers can explain enshittification.
- Consumers are not necessarily worse-off despite Gatekeepers
- DSA 27 seems redundant.
 Already in platforms interest to be transparent.
 Difficult for consumers to do better than platform.
- ► Regulating gatekeepers not only facilitate competition between platforms but between firms on platforms.

Questions? Comments? Thanks for the invite. Email: robin@robinng.com